diff --git a/src/lib.rs b/src/lib.rs index 80b548d..391cd9f 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -5,6 +5,7 @@ pub mod algebra; pub mod derivable; pub mod layer; pub mod network; +pub mod optimize; pub mod train; mod utils; @@ -21,5 +22,6 @@ pub mod prelude { pub use crate::network::sequential::{ NeuraSequential, NeuraSequentialConstruct, NeuraSequentialTail, }; - pub use crate::train::{NeuraBackprop, NeuraBatchedTrainer}; + pub use crate::optimize::NeuraBackprop; + pub use crate::train::NeuraBatchedTrainer; } diff --git a/src/network/mod.rs b/src/network/mod.rs index 5527e21..ac37723 100644 --- a/src/network/mod.rs +++ b/src/network/mod.rs @@ -1,25 +1,29 @@ -use crate::{algebra::NeuraVectorSpace, derivable::NeuraLoss, layer::NeuraLayer}; +use crate::{algebra::NeuraVectorSpace, layer::NeuraLayer, optimize::NeuraOptimizerBase}; pub mod sequential; -pub trait NeuraTrainableNetwork: NeuraLayer { +pub trait NeuraTrainableNetworkBase: NeuraLayer { type Gradient: NeuraVectorSpace; + type LayerOutput; fn default_gradient(&self) -> Self::Gradient; fn apply_gradient(&mut self, gradient: &Self::Gradient); - /// Should implement the backpropagation algorithm, see `NeuraTrainableLayer::backpropagate` for more information. - fn backpropagate>( - &self, - input: &Input, - target: &Loss::Target, - loss: Loss, - ) -> (Input, Self::Gradient); - /// Should return the regularization gradient fn regularize(&self) -> Self::Gradient; /// Called before an iteration begins, to allow the network to set itself up for training or not. fn prepare(&mut self, train_iteration: bool); } + +pub trait NeuraTrainableNetwork: NeuraTrainableNetworkBase +where + Optimizer: NeuraOptimizerBase, +{ + fn traverse( + &self, + input: &Input, + optimizer: &Optimizer, + ) -> Optimizer::Output; +} diff --git a/src/network/sequential/mod.rs b/src/network/sequential/mod.rs index ed95a87..7a0ee72 100644 --- a/src/network/sequential/mod.rs +++ b/src/network/sequential/mod.rs @@ -1,7 +1,7 @@ -use super::NeuraTrainableNetwork; +use super::{NeuraTrainableNetwork, NeuraTrainableNetworkBase}; use crate::{ - derivable::NeuraLoss, layer::{NeuraLayer, NeuraPartialLayer, NeuraShape, NeuraTrainableLayer}, + optimize::{NeuraOptimizerFinal, NeuraOptimizerTransient}, }; mod construct; @@ -129,10 +129,11 @@ impl< impl< Input, Layer: NeuraTrainableLayer, - ChildNetwork: NeuraTrainableNetwork, - > NeuraTrainableNetwork for NeuraSequential + ChildNetwork: NeuraTrainableNetworkBase, + > NeuraTrainableNetworkBase for NeuraSequential { type Gradient = (Layer::Gradient, Box); + type LayerOutput = Layer::Output; fn default_gradient(&self) -> Self::Gradient { ( @@ -146,25 +147,6 @@ impl< self.child_network.apply_gradient(&gradient.1); } - fn backpropagate>( - &self, - input: &Input, - target: &Loss::Target, - loss: Loss, - ) -> (Input, Self::Gradient) { - let next_activation = self.layer.eval(input); - let (backprop_gradient, weights_gradient) = - self.child_network - .backpropagate(&next_activation, target, loss); - let (backprop_gradient, layer_gradient) = - self.layer.backprop_layer(input, backprop_gradient); - - ( - backprop_gradient, - (layer_gradient, Box::new(weights_gradient)), - ) - } - fn regularize(&self) -> Self::Gradient { ( self.layer.regularize_layer(), @@ -179,8 +161,9 @@ impl< } /// A dummy implementation of `NeuraTrainableNetwork`, which simply calls `loss.eval` in `backpropagate`. -impl NeuraTrainableNetwork for () { +impl NeuraTrainableNetworkBase for () { type Gradient = (); + type LayerOutput = Input; #[inline(always)] fn default_gradient(&self) -> () { @@ -192,18 +175,6 @@ impl NeuraTrainableNetwork for () { // Noop } - #[inline(always)] - fn backpropagate>( - &self, - final_activation: &Input, - target: &Loss::Target, - loss: Loss, - ) -> (Input, Self::Gradient) { - let backprop_epsilon = loss.nabla(target, &final_activation); - - (backprop_epsilon, ()) - } - #[inline(always)] fn regularize(&self) -> () { () @@ -215,6 +186,44 @@ impl NeuraTrainableNetwork for () { } } +impl< + Input, + Layer: NeuraTrainableLayer, + Optimizer: NeuraOptimizerTransient, + ChildNetwork: NeuraTrainableNetworkBase, + > NeuraTrainableNetwork for NeuraSequential +where + ChildNetwork: NeuraTrainableNetwork, +{ + fn traverse( + &self, + input: &Input, + optimizer: &Optimizer, + ) -> Optimizer::Output { + let next_activation = self.layer.eval(input); + let child_result = self.child_network.traverse(&next_activation, optimizer); + + optimizer.eval_layer( + &self.layer, + input, + child_result, + |layer_gradient, child_gradient| (layer_gradient, Box::new(child_gradient)), + ) + } +} + +impl> NeuraTrainableNetwork + for () +{ + fn traverse( + &self, + input: &Input, + optimizer: &Optimizer, + ) -> Optimizer::Output { + optimizer.eval_final(input.clone()) + } +} + impl From for NeuraSequential { fn from(layer: Layer) -> Self { Self { diff --git a/src/optimize.rs b/src/optimize.rs new file mode 100644 index 0000000..9a58b71 --- /dev/null +++ b/src/optimize.rs @@ -0,0 +1,112 @@ +use num::ToPrimitive; + +use crate::{ + derivable::NeuraLoss, + layer::NeuraTrainableLayer, + network::{NeuraTrainableNetwork, NeuraTrainableNetworkBase}, +}; + +pub trait NeuraOptimizerBase { + type Output; +} + +pub trait NeuraOptimizerFinal: NeuraOptimizerBase { + fn eval_final(&self, output: LayerOutput) -> Self::Output; +} + +pub trait NeuraOptimizerTransient: NeuraOptimizerBase { + fn eval_layer< + Input, + NetworkGradient, + RecGradient, + Layer: NeuraTrainableLayer, + >( + &self, + layer: &Layer, + input: &Input, + rec_opt_output: Self::Output, + combine_gradients: impl Fn(Layer::Gradient, RecGradient) -> NetworkGradient, + ) -> Self::Output; +} + +pub trait NeuraOptimizer> { + fn get_gradient( + &self, + trainable: &Trainable, + input: &Input, + target: &Target, + ) -> Trainable::Gradient; + + fn score(&self, trainable: &Trainable, input: &Input, target: &Target) -> f64; +} + +pub struct NeuraBackprop { + loss: Loss, +} + +impl NeuraBackprop { + pub fn new(loss: Loss) -> Self { + Self { loss } + } +} + +impl< + Input, + Target, + Trainable: NeuraTrainableNetworkBase, + Loss: NeuraLoss + Clone, + > NeuraOptimizer for NeuraBackprop +where + >::Output: ToPrimitive, + Trainable: for<'a> NeuraTrainableNetwork, &'a Target)>, +{ + fn get_gradient( + &self, + trainable: &Trainable, + input: &Input, + target: &Target, + ) -> Trainable::Gradient { + let (_, gradient) = trainable.traverse(input, &(self, target)); + + gradient + } + + fn score(&self, trainable: &Trainable, input: &Input, target: &Target) -> f64 { + let output = trainable.eval(&input); + self.loss.eval(target, &output).to_f64().unwrap() + } +} + +impl NeuraOptimizerBase for (&NeuraBackprop, &Target) { + type Output = (NetworkInput, NetworkGradient); // epsilon, gradient +} + +impl> + NeuraOptimizerFinal for (&NeuraBackprop, &Target) +{ + fn eval_final(&self, output: LayerOutput) -> Self::Output { + (self.0.loss.nabla(self.1, &output), ()) + } +} + +impl NeuraOptimizerTransient + for (&NeuraBackprop, &Target) +{ + fn eval_layer< + Input, + NetworkGradient, + RecGradient, + Layer: NeuraTrainableLayer, + >( + &self, + layer: &Layer, + input: &Input, + rec_opt_output: Self::Output, + combine_gradients: impl Fn(Layer::Gradient, RecGradient) -> NetworkGradient, + ) -> Self::Output { + let (epsilon_in, rec_gradient) = rec_opt_output; + let (epsilon_out, layer_gradient) = layer.backprop_layer(input, epsilon_in); + + (epsilon_out, combine_gradients(layer_gradient, rec_gradient)) + } +} diff --git a/src/train.rs b/src/train.rs index a331955..1e45d5e 100644 --- a/src/train.rs +++ b/src/train.rs @@ -1,52 +1,6 @@ -use num::ToPrimitive; - -use crate::{algebra::NeuraVectorSpace, derivable::NeuraLoss, network::NeuraTrainableNetwork}; - -pub trait NeuraGradientSolver> { - fn get_gradient( - &self, - trainable: &Trainable, - input: &Input, - target: &Target, - ) -> Trainable::Gradient; - - fn score(&self, trainable: &Trainable, input: &Input, target: &Target) -> f64; -} - -#[non_exhaustive] -pub struct NeuraBackprop { - loss: Loss, -} - -impl NeuraBackprop { - pub fn new(loss: Loss) -> Self { - Self { loss } - } -} - -impl< - Input, - Target, - Trainable: NeuraTrainableNetwork, - Loss: NeuraLoss + Clone, - > NeuraGradientSolver for NeuraBackprop -where - >::Output: ToPrimitive, -{ - fn get_gradient( - &self, - trainable: &Trainable, - input: &Input, - target: &Target, - ) -> Trainable::Gradient { - trainable.backpropagate(input, target, self.loss.clone()).1 - } - - fn score(&self, trainable: &Trainable, input: &Input, target: &Target) -> f64 { - let output = trainable.eval(&input); - self.loss.eval(target, &output).to_f64().unwrap() - } -} +use crate::{ + algebra::NeuraVectorSpace, network::NeuraTrainableNetworkBase, optimize::NeuraOptimizer, +}; #[non_exhaustive] pub struct NeuraBatchedTrainer { @@ -118,8 +72,8 @@ impl NeuraBatchedTrainer { pub fn train< Input: Clone, Target: Clone, - Network: NeuraTrainableNetwork, - GradientSolver: NeuraGradientSolver, + Network: NeuraTrainableNetworkBase, + GradientSolver: NeuraOptimizer, Inputs: IntoIterator, >( &self, @@ -185,10 +139,11 @@ mod test { use super::*; use crate::{ assert_approx, - derivable::{activation::Linear, loss::Euclidean, regularize::NeuraL0}, + derivable::{activation::Linear, loss::Euclidean, regularize::NeuraL0, NeuraLoss}, layer::{dense::NeuraDenseLayer, NeuraLayer}, network::sequential::{NeuraSequential, NeuraSequentialTail}, neura_sequential, + optimize::NeuraBackprop, }; #[test]