#![feature(generic_arg_infer)] use std::io::Write; use nalgebra::{dvector, DVector}; #[allow(unused_imports)] use neuramethyst::derivable::activation::{LeakyRelu, Linear, Relu, Tanh}; use neuramethyst::derivable::loss::CrossEntropy; use neuramethyst::derivable::regularize::NeuraL1; use neuramethyst::prelude::*; use rand::Rng; fn main() { let mut network = neura_sequential![ neura_layer!("dense", 8).regularization(NeuraL1(0.001)), neura_layer!("dropout", 0.25), neura_layer!("dense", 2) .activation(Linear) .regularization(NeuraL1(0.001)), neura_layer!("softmax"), ] .construct(NeuraShape::Vector(2)) .unwrap(); let inputs = (0..1).cycle().map(move |_| { let mut rng = rand::thread_rng(); let category = rng.gen_bool(0.5) as usize; let (x, y) = if category == 0 { let radius: f32 = rng.gen_range(0.0..2.0); let angle = rng.gen_range(0.0..std::f32::consts::TAU); (angle.cos() * radius, angle.sin() * radius) } else { let radius: f32 = rng.gen_range(3.0..5.0); let angle = rng.gen_range(0.0..std::f32::consts::TAU); (angle.cos() * radius, angle.sin() * radius) }; (dvector![x, y], one_hot(category, 2)) }); let test_inputs: Vec<_> = inputs.clone().take(10).collect(); if std::env::args().any(|arg| arg == "draw") { for epoch in 0..200 { let mut trainer = NeuraBatchedTrainer::new(0.03, 10); trainer.batch_size = 10; trainer.train( NeuraBackprop::new(CrossEntropy), &mut network, inputs.clone(), &test_inputs, ); let network = network.clone(); draw_neuron_activation( |input| { network .eval(&dvector![input[0] as f32, input[1] as f32]) .into_iter() .map(|x| *x as f64) .collect() }, 6.0, ); println!("{}", epoch); std::thread::sleep(std::time::Duration::new(0, 50_000_000)); } } else { let mut trainer = NeuraBatchedTrainer::new(0.03, 20 * 50); trainer.batch_size = 10; trainer.log_iterations = 20; trainer.train( NeuraBackprop::new(CrossEntropy), &mut network, inputs.clone(), &test_inputs, ); // println!("{}", String::from("\n").repeat(64)); // draw_neuron_activation(|input| network.eval(&input).into_iter().collect(), 6.0); } let mut file = std::fs::File::create("target/bivariate.csv").unwrap(); for (input, _target) in test_inputs { let guess = neuramethyst::argmax(network.eval(&input).as_slice()); writeln!(&mut file, "{},{},{}", input[0], input[1], guess).unwrap(); } } // TODO: move this to the library? fn draw_neuron_activation Vec>(callback: F, scale: f64) { use viuer::Config; const WIDTH: u32 = 64; const HEIGHT: u32 = 64; let mut image = image::RgbImage::new(WIDTH, HEIGHT); fn sigmoid(x: f64) -> f64 { 1.0 / (1.0 + (-x * 3.0).exp()) } for y in 0..HEIGHT { let y2 = 2.0 * y as f64 / HEIGHT as f64 - 1.0; for x in 0..WIDTH { let x2 = 2.0 * x as f64 / WIDTH as f64 - 1.0; let activation = callback([x2 * scale, y2 * scale]); let r = (sigmoid(activation.get(0).copied().unwrap_or(-1.0)) * 255.0).floor() as u8; let g = (sigmoid(activation.get(1).copied().unwrap_or(-1.0)) * 255.0).floor() as u8; let b = (sigmoid(activation.get(2).copied().unwrap_or(-1.0)) * 255.0).floor() as u8; *image.get_pixel_mut(x, y) = image::Rgb([r, g, b]); } } let config = Config { use_kitty: false, // absolute_offset: false, ..Default::default() }; viuer::print(&image::DynamicImage::ImageRgb8(image), &config).unwrap(); } fn one_hot(value: usize, categories: usize) -> DVector { let mut res = DVector::from_element(categories, 0.0); if value < categories { res[value] = 1.0; } res }