#![feature(generic_arg_infer)] use std::fs::File; use nalgebra::dvector; use neuramethyst::derivable::activation::{Relu, Tanh}; use neuramethyst::derivable::loss::Euclidean; use neuramethyst::prelude::*; fn main() { let mut network = neura_sequential![ neura_layer!("dense", 4, f64).activation(Relu), neura_layer!("dense", 1, f64).activation(Tanh) ] .construct(NeuraShape::Vector(2)) .unwrap(); let inputs = [ (dvector![0.0, 0.0], dvector![0.0]), (dvector![0.0, 1.0], dvector![1.0]), (dvector![1.0, 0.0], dvector![1.0]), (dvector![1.0, 1.0], dvector![0.0]), ]; let mut trainer = NeuraBatchedTrainer::new(0.05, 1); trainer.batch_size = 1; let mut parameters = vec![( network.layer.weights.clone(), network.layer.bias.clone(), network.child_network.layer.weights.clone(), network.child_network.layer.bias.clone(), )]; for iteration in 0..4 { trainer.train( &NeuraBackprop::new(Euclidean), &mut network, inputs.iter().cloned().skip(iteration).take(1), &inputs, ); parameters.push(( network.layer.weights.clone(), network.layer.bias.clone(), network.child_network.layer.weights.clone(), network.child_network.layer.bias.clone(), )); } let mut output = File::create("tests/xor.json").unwrap(); serde_json::to_writer(&mut output, ¶meters).unwrap(); }