#![feature(generic_arg_infer)] use neuramethyst::derivable::activation::Relu; use neuramethyst::derivable::loss::Euclidean; use neuramethyst::prelude::*; fn main() { let mut network = neura_network![ neura_layer!("dense", 2, 4; Relu), neura_layer!("dense", 3; Relu), neura_layer!("dense", 1; Relu) ]; let inputs = [ ([0.0, 0.0], [0.0]), ([0.0, 1.0], [1.0]), ([1.0, 0.0], [1.0]), ([1.0, 1.0], [0.0]), ]; for (input, target) in inputs { println!( "Input: {:?}, target: {}, actual: {:.3}", &input, target[0], network.eval(&input)[0] ); } let mut trainer = NeuraBatchedTrainer::new(0.05, 1000); trainer.batch_size = 6; trainer.log_iterations = 250; trainer.learning_momentum = 0.01; trainer.train( NeuraBackprop::new(Euclidean), &mut network, cycle_shuffling(inputs.iter().cloned(), rand::thread_rng()), &inputs, ); for (input, target) in inputs { println!( "Input: {:?}, target: {}, actual: {:.3}", &input, target[0], network.eval(&input)[0] ); } }