diff --git a/Rubin.lean b/Rubin.lean index 97610b0..e4c66b3 100644 --- a/Rubin.lean +++ b/Rubin.lean @@ -704,6 +704,54 @@ end RegularSupport section HomeoGroup +open Topology + +theorem proposition_3_2 {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] + [T2Space α] [LocallyCompactSpace α] [h_ld : LocallyDense G α] [HasNoIsolatedPoints α] + [ContinuousMulAction G α] + {U : Set α} (U_open : IsOpen U) {p : α} (p_in_U : p ∈ U) : + ∃ (W : Set α), W ∈ 𝓝 p ∧ closure W ⊆ U ∧ ∃ (g : G), g ∈ RigidStabilizer G W ∧ p ∈ RegularSupport α g := +by + have U_in_nhds : U ∈ 𝓝 p := by + rw [mem_nhds_iff] + use U + + let ⟨W', W'_in_nhds, W'_ss_U, W'_compact⟩ := local_compact_nhds U_in_nhds + + -- This feels like black magic, but okay + let ⟨W, _W_compact, W_closed, W'_ss_int_W, W_ss_U⟩ := exists_compact_closed_between W'_compact U_open W'_ss_U + have W_cl_eq_W : closure W = W := IsClosed.closure_eq W_closed + + have W_in_nhds : W ∈ 𝓝 p := by + rw [mem_nhds_iff] + use interior W + repeat' apply And.intro + · exact interior_subset + · simp + · exact W'_ss_int_W (mem_of_mem_nhds W'_in_nhds) + + use W + + repeat' apply And.intro + exact W_in_nhds + { + rw [W_cl_eq_W] + exact W_ss_U + } + + have p_in_int_W : p ∈ interior W := W'_ss_int_W (mem_of_mem_nhds W'_in_nhds) + + let ⟨g, g_in_rist, g_moves_p⟩ := get_moving_elem_in_rigidStabilizer G p_in_int_W + + use g + constructor + · apply rigidStabilizer_mono interior_subset + simp + exact g_in_rist + · rw [<-mem_support] at g_moves_p + apply support_subset_regularSupport + exact g_moves_p + end HomeoGroup diff --git a/Rubin/LocallyDense.lean b/Rubin/LocallyDense.lean index 97bfb5a..f672f77 100644 --- a/Rubin/LocallyDense.lean +++ b/Rubin/LocallyDense.lean @@ -15,6 +15,24 @@ class LocallyDense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G p ∈ interior (closure (MulAction.orbit (RigidStabilizer G U) p)) #align is_locally_dense Rubin.LocallyDense +theorem LocallyDense.from_rigidStabilizer_in_nhds (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] : + (∀ U : Set α, IsOpen U → ∀ p ∈ U, closure (MulAction.orbit (RigidStabilizer G U) p) ∈ 𝓝 p) → + LocallyDense G α := +by + intro hyp + constructor + intro U p p_in_U + + -- TODO: potentially add that requirement to LocallyDense? + have U_open : IsOpen U := sorry + + have closure_in_nhds := hyp U U_open p p_in_U + rw [mem_nhds_iff] at closure_in_nhds + + rw [mem_interior] + exact closure_in_nhds + +-- TODO: rename lemma LocallyDense.nonEmpty {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] [LocallyDense G α]: ∀ {U : Set α}, Set.Nonempty U → @@ -23,6 +41,45 @@ by intros U H_ne exact ⟨H_ne.some, H_ne.some_mem, LocallyDense.isLocallyDense U H_ne.some H_ne.some_mem⟩ +/-- +This is a stronger statement than `LocallyMoving.get_nontrivial_rist_elem`, +as here we are able to prove that the nontrivial element does move `p`. + +The condition that `Filer.NeBot (𝓝[≠] p)` is automatically satisfied by the `HasNoIsolatedPoints` class. +--/ +theorem get_moving_elem_in_rigidStabilizer (G : Type _) {α : Type _} + [Group G] [TopologicalSpace α] [MulAction G α] [LocallyDense G α] + [T1Space α] {p : α} [Filter.NeBot (𝓝[≠] p)] + {U : Set α} (p_in_U : p ∈ U) : + ∃ g : G, g ∈ RigidStabilizer G U ∧ g • p ≠ p := +by + by_contra g_not_exist + rw [<-Classical.not_forall_not] at g_not_exist + simp at g_not_exist + + have orbit_singleton : MulAction.orbit (RigidStabilizer G U) p = {p} := by + ext x + rw [MulAction.mem_orbit_iff] + rw [Set.mem_singleton_iff] + simp + constructor + · intro ⟨g, g_in_rist, g_eq_p⟩ + rw [g_not_exist g g_in_rist] at g_eq_p + exact g_eq_p.symm + · intro x_eq_p + use 1 + rw [x_eq_p, one_smul] + exact ⟨Subgroup.one_mem _, rfl⟩ + + have regular_orbit_empty : interior (closure (MulAction.orbit (RigidStabilizer G U) p)) = ∅ := by + rw [orbit_singleton] + rw [closure_singleton] + rw [interior_singleton] + + have p_in_regular_orbit := LocallyDense.isLocallyDense (G := G) U p p_in_U + rw [regular_orbit_empty] at p_in_regular_orbit + exact p_in_regular_orbit + class LocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := locally_moving: ∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥ #align is_locally_moving Rubin.LocallyMoving