A quick fix to prop 2.1, just to test #1

Open
laurentbartholdi wants to merge 1 commits from laurentbartholdi/rubin-lean4:fix-prop-2.1 into main

@ -0,0 +1,412 @@
/-
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Laurent Bartholdi
-/
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Finset.Card
import Mathlib.Data.Fintype.Perm
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.Commutator
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.GroupTheory.Exponent
import Mathlib.GroupTheory.Perm.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Compactness.Compact
import Mathlib.Topology.Separation
import Mathlib.Topology.Homeomorph
import Rubin.Tactic
import Rubin.MulActionExt
import Rubin.SmulImage
import Rubin.Support
import Rubin.Topological
import Rubin.RigidStabilizer
import Rubin.Period
import Rubin.AlgebraicDisjointness
import Rubin.RegularSupport
#align_import rubin
namespace Rubin
open Rubin.Tactic
-- TODO: find a home
theorem equiv_congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y :=
by
intro x_ne_y
by_contra h
apply x_ne_y
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
#align equiv.congr_ne Rubin.equiv_congr_ne
----------------------------------------------------------------
section Rubin
variable {G α β : Type _} [Group G]
----------------------------------------------------------------
section RubinActions
variable [TopologicalSpace α] [TopologicalSpace β]
structure RubinAction (G α : Type _) extends
Group G,
TopologicalSpace α,
MulAction G α,
FaithfulSMul G α
where
locally_compact : LocallyCompactSpace α
hausdorff : T2Space α
no_isolated_points : Rubin.has_no_isolated_points α
locallyDense : LocallyDense G α
#align rubin_action Rubin.RubinAction
end RubinActions
lemma lemma_2_2 (G: Type _) {α : Type _} [Group G] [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
[T2Space α] [h_lm : LocallyMoving G α]
{U : Set α} (U_open : IsOpen U) (U_nonempty : Set.Nonempty U) :
Monoid.exponent (RigidStabilizer G U) = 0 :=
by
by_contra exp_ne_zero
let ⟨p, ⟨g, g_in_ristU⟩, n, p_in_U, n_pos, hpgn, n_eq_Sup⟩ := Period.period_from_exponent U U_nonempty exp_ne_zero
simp at hpgn
let ⟨V', V'_open, p_in_V', disj'⟩ := disjoint_nbhd_fin (smul_injective_within_period hpgn)
let V := U ∩ V'
have V_open : IsOpen V := U_open.inter V'_open
have p_in_V : p ∈ V := ⟨p_in_U, p_in_V'⟩
have disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V) := by
intro i j i_ne_j
apply Set.disjoint_of_subset
· apply smulImage_subset
apply Set.inter_subset_right
· apply smulImage_subset
apply Set.inter_subset_right
exact disj' i j i_ne_j
let ⟨h, h_in_ristV, h_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem p_in_V)
have hg_in_ristU : h * g ∈ RigidStabilizer G U := by
simp [RigidStabilizer]
intro x x_notin_U
rw [mul_smul]
rw [g_in_ristU _ x_notin_U]
have x_notin_V : x ∉ V := fun x_in_V => x_notin_U x_in_V.left
rw [h_in_ristV _ x_notin_V]
let ⟨q, q_in_V, hq_ne_q ⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one
have gpowi_q_notin_V : ∀ (i : Fin n), (i : ) > 0 → g ^ (i : ) • q ∉ V := by
apply smulImage_distinct_of_disjoint_exp n_pos disj
exact q_in_V
-- We have (hg)^i q = g^i q for all 0 < i < n
have hgpow_eq_gpow : ∀ (i : Fin n), (h * g) ^ (i : ) • q = g ^ (i : ) • q := by
intro ⟨i, i_lt_n⟩
simp
induction i with
| zero => simp
| succ i' IH =>
have i'_lt_n: i' < n := Nat.lt_of_succ_lt i_lt_n
have IH := IH i'_lt_n
rw [smul_succ]
rw [IH]
rw [smul_succ]
rw [mul_smul]
rw [<-smul_succ]
-- We can show that `g^(Nat.succ i') • q ∉ V`,
-- which means that with `h` in `RigidStabilizer G V`, `h` fixes that point
apply h_in_ristV (g^(Nat.succ i') • q)
let i'₂ : Fin n := ⟨Nat.succ i', i_lt_n⟩
have h_eq: Nat.succ i' = (i'₂ : ) := by simp
rw [h_eq]
apply smulImage_distinct_of_disjoint_exp
· exact n_pos
· exact disj
· exact q_in_V
· simp
-- Combined with `g^i • q ≠ q`, this yields `(hg)^i • q ≠ q` for all `0 < i < n`
have hgpow_moves : ∀ (i : Fin n), 0 < (i : ) → (h*g)^(i : ) • q ≠ q := by
intro ⟨i, i_lt_n⟩ i_pos
simp at i_pos
rw [hgpow_eq_gpow]
simp
by_contra h'
apply gpowi_q_notin_V ⟨i, i_lt_n⟩
exact i_pos
simp (config := {zeta := false}) only []
rw [h']
exact q_in_V
-- This even holds for `i = n`
have hgpown_moves : (h * g) ^ n • q ≠ q := by
-- Rewrite (hg)^n • q = h * g^n • q
rw [<-Nat.succ_pred n_pos.ne.symm]
rw [pow_succ]
have h_eq := hgpow_eq_gpow ⟨Nat.pred n, Nat.pred_lt_self n_pos⟩
simp at h_eq
rw [mul_smul, h_eq, <-mul_smul, mul_assoc, <-pow_succ]
rw [<-Nat.succ_eq_add_one, Nat.succ_pred n_pos.ne.symm]
-- We first eliminate `g^n • q` by proving that `n = Period g q`
have period_gq_eq_n : Period.period q g = n := by
apply ge_antisymm
{
apply Period.notfix_le_period'
· exact n_pos
· apply Period.period_pos'
· exact Set.nonempty_of_mem p_in_U
· exact exp_ne_zero
· exact q_in_V.left
· exact g_in_ristU
· intro i i_pos
rw [<-hgpow_eq_gpow]
apply hgpow_moves i i_pos
}
{
rw [n_eq_Sup]
apply Period.period_le_Sup_periods'
· exact Set.nonempty_of_mem p_in_U
· exact exp_ne_zero
· exact q_in_V.left
· exact g_in_ristU
}
rw [mul_smul, <-period_gq_eq_n]
rw [Period.pow_period_fix]
-- Finally, we have `h • q ≠ q`
exact hq_ne_q
-- Finally, we derive a contradiction
have ⟨period_hg_pos, period_hg_le_n⟩ := Period.zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero ⟨q, q_in_V.left⟩ ⟨h * g, hg_in_ristU⟩
simp at period_hg_pos
simp at period_hg_le_n
rw [<-n_eq_Sup] at period_hg_le_n
cases (lt_or_eq_of_le period_hg_le_n) with
| inl period_hg_lt_n =>
apply hgpow_moves ⟨Period.period q (h * g), period_hg_lt_n⟩
exact period_hg_pos
simp
apply Period.pow_period_fix
| inr period_hg_eq_n =>
apply hgpown_moves
rw [<-period_hg_eq_n]
apply Period.pow_period_fix
section proposition_2_1
def AlgebraicSubgroup {G : Type _} [Group G] (f : G) : Set G :=
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
-- TODO: WIP, can't seem to be able to construct a set U that fulfills all the conditions
lemma open_disj_of_not_support_subset_rsupp {G α : Type _}
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α] [h_fsm : FaithfulSMul G α]
[h_lm : LocallyMoving G α]
{f h : G} (not_support_subset_rsupp : ¬Support α h ⊆ RegularSupport α f):
∃ V : Set α, V ⊆ Support α h ∧ Set.Nonempty V ∧ IsOpen V ∧ Disjoint V (Support α f) :=
by
have v_exists := by
rw [Set.not_subset] at not_support_subset_rsupp
exact not_support_subset_rsupp
let ⟨v, ⟨v_in_supp, v_notin_rsupp⟩⟩ := v_exists
have v_notin_supp_f : v ∉ Support α f := by
intro h₁
exact v_notin_rsupp (support_subset_regularSupport h₁)
let U := interior (Support α h \ Support α f)
have U_open : IsOpen U := by simp
have U_subset_supp_h : U ⊆ Support α h := by
calc
U ⊆ (Support α h \ Support α f) := interior_subset
_ ⊆ Support α h := Set.diff_subset _ _
have U_disj_supp_f : Disjoint U (Support α f) := by
by_contra h_contra
rw [Set.not_disjoint_iff] at h_contra
let ⟨x, x_in_U, x_in_supp_F⟩ := h_contra
unfold_let at x_in_U
have x_in_diff := interior_subset x_in_U
exact x_in_diff.2 x_in_supp_F
have U_nonempty : Set.Nonempty U := by
by_contra U_empty
rw [Set.not_nonempty_iff_eq_empty] at U_empty
have v_moved : h • v ≠ v := by rw [<-mem_support]; assumption
let ⟨W, ⟨W_open, v_in_W, W_subset_supp_h, W_disj_img⟩⟩ := disjoint_nbhd_in (support_open _) v_in_supp v_moved
let V := W \ {v}
have V_open : IsOpen V := W_open.sdiff isClosed_singleton
sorry
use U
-- Stuff I attempted so far:
-- let U := Support α h \ closure (Support α f)
-- have U_open : IsOpen U := by
-- apply IsOpen.sdiff
-- exact support_open h
-- simp
-- let V := U \ {v}
-- have V_open : IsOpen V := by
-- apply IsOpen.sdiff
-- · apply IsOpen.sdiff
-- exact support_open h
-- simp
-- · exact isClosed_singleton
-- have U_subset_support : U ⊆ Support α h := Set.diff_subset _ _
-- have V_subset_support : V ⊆ Support α h := by
-- -- Mathlib kind of letting me down on this one:
-- unfold_let
-- repeat rw [Set.diff_eq]
-- intro x x_in
-- exact x_in.left.left
-- have V_disj_support : Disjoint V (Support α f) := by
-- intro S
-- simp
-- intro S_subset
-- intro S_support
-- intro x x_in_S
-- have h₁ := S_subset x_in_S
-- simp at h₁
-- have h₂ := S_support x_in_S
-- simp at h₂
-- have h₃ := not_mem_of_not_mem_closure h₁.left.right
-- exact h₃ h₂
-- use V
lemma nontrivial_pow_from_exponent_eq_zero {G : Type _} [Group G]
(exp_eq_zero : Monoid.exponent G = 0) :
∀ (n : ), n > 0 → ∃ g : G, g^n ≠ 1 :=
by
intro n n_pos
rw [Monoid.exponent_eq_zero_iff] at exp_eq_zero
unfold Monoid.ExponentExists at exp_eq_zero
rw [<-Classical.not_forall_not, Classical.not_not] at exp_eq_zero
simp at exp_eq_zero
exact exp_eq_zero n n_pos
lemma Commute.inv {G : Type _} [Group G] {f g : G} : Commute f g → Commute f g⁻¹ := by
unfold Commute SemiconjBy
intro h
have h₁ : f = g * f * g⁻¹ := by
nth_rw 1 [<-mul_one f]
rw [<-mul_right_inv g, <-mul_assoc]
rw [h]
nth_rw 2 [h₁]
group
lemma Commute.inv_iff {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f g⁻¹ := ⟨
Commute.inv,
by
nth_rw 2 [<-inv_inv g]
apply Commute.inv
lemma Commute.inv_iff₂ {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f⁻¹ g := ⟨
Commute.symm ∘ Commute.inv_iff.mp ∘ Commute.symm,
Commute.symm ∘ Commute.inv_iff.mpr ∘ Commute.symm
lemma Commute.into {G : Type _} [Group G] {f g : G} : Commute f g → f * g = g * f := by
unfold Commute SemiconjBy
tauto
lemma proposition_2_1 {G α : Type _}
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α]
[LocallyMoving G α] [h_faithful : FaithfulSMul G α]
(f : G) :
Set.centralizer (AlgebraicSubgroup f) = RigidStabilizer G (RegularSupport α f) :=
by
apply Set.eq_of_subset_of_subset
swap
{
intro h h_in_rist
simp at h_in_rist
rw [Set.mem_centralizer_iff]
intro g g_in_S
simp [AlgebraicSubgroup] at g_in_S
let ⟨g', ⟨g'_alg_disj, g_eq_g'⟩⟩ := g_in_S
have supp_disj := proposition_1_1_2 f g' g'_alg_disj (α := α)
have supp_disj' : Disjoint (Support α f) (Support α g) := by
rw [← g_eq_g']
exact supp_disj
have rsupp_disj : Disjoint (RegularSupport α f) (Support α g) := by
have cl_supp_disj : Disjoint (closure (Support α f)) (Support α g) := by
exact Disjoint.closure_left supp_disj' (support_open g)
apply Set.disjoint_of_subset _ _ cl_supp_disj
· rw [RegularSupport.def]
exact interior_subset
· rfl
apply Commute.eq
symm
apply commute_if_rigidStabilizer_and_disjoint (α := α)
· exact h_in_rist
· exact rsupp_disj
}
intro h h_in_centralizer
by_contra h_notin_rist
simp at h_notin_rist
rw [rigidStabilizer_support] at h_notin_rist
let ⟨V, V_in_supp_h, V_nonempty, V_open, V_disj_supp_f⟩ := open_disj_of_not_support_subset_rsupp h_notin_rist
let ⟨v, v_in_V⟩ := V_nonempty
have v_moved := V_in_supp_h v_in_V
rw [mem_support] at v_moved
have ⟨W, W_open, v_in_W, W_subset_support, disj_W_img⟩ := disjoint_nbhd_in V_open v_in_V v_moved
have mono_exp := lemma_2_2 G W_open (Set.nonempty_of_mem v_in_W)
let ⟨⟨g, g_in_rist⟩, g12_ne_one⟩ := nontrivial_pow_from_exponent_eq_zero mono_exp 12 (by norm_num)
simp at g12_ne_one
have disj_supports : Disjoint (Support α f) (Support α g) := by
apply Set.disjoint_of_subset_right
· apply rigidStabilizer_support.mp
exact g_in_rist
· apply Set.disjoint_of_subset_right
· exact W_subset_support
· exact V_disj_supp_f.symm
have alg_disj_f_g := proposition_1_1_1 _ _ disj_supports
have g12_in_algebraic_subgroup : g^12 ∈ AlgebraicSubgroup f := by
simp [AlgebraicSubgroup]
use g
constructor
exact ↑alg_disj_f_g
rfl
have h_nc_g12 : ¬Commute (g^12) h := by
have supp_g12_sub_W : Support α (g^12) ⊆ W := by
rw [rigidStabilizer_support] at g_in_rist
calc
Support α (g^12) ⊆ Support α g := by apply support_pow
_ ⊆ W := g_in_rist
have supp_g12_disj_hW : Disjoint (Support α (g^12)) (h •'' W) := by
apply Set.disjoint_of_subset_left
swap
· exact disj_W_img
· exact supp_g12_sub_W
exact not_commute_of_disj_support_smulImage
g12_ne_one
supp_g12_sub_W
supp_g12_disj_hW
apply h_nc_g12
exact h_in_centralizer _ g12_in_algebraic_subgroup
end proposition_2_1
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end Rubin
end Rubin
Loading…
Cancel
Save