/- Copyright (c) 2023 Laurent Bartholdi. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Laurent Bartholdi -/ import Mathlib.Data.Finset.Basic import Mathlib.Data.Finset.Card import Mathlib.Data.Fintype.Perm import Mathlib.GroupTheory.Subgroup.Basic import Mathlib.GroupTheory.Commutator import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Exponent import Mathlib.GroupTheory.Perm.Basic import Mathlib.Topology.Basic import Mathlib.Topology.Compactness.Compact import Mathlib.Topology.Separation import Mathlib.Topology.Homeomorph import Lean.Meta.Tactic.Util import Lean.Elab.Tactic.Basic import Lean.Meta.Tactic.Simp.Main import Mathlib.Tactic.Ring.Basic #align_import rubin -- TODO: remove --@[simp] theorem Rubin.GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} : g • h • x = (g * h) • x := smul_smul g h x #align smul_smul' Rubin.GroupActionExt.smul_smul' --@[simp] theorem Rubin.GroupActionExt.smul_eq_smul_inv {G α : Type _} [Group G] [MulAction G α] {g h : G} {x y : α} : g • x = h • y ↔ (h⁻¹ * g) • x = y := by constructor · intro hyp let res := congr_arg ((· • ·) h⁻¹) hyp simp at res rw [← mul_smul] at res exact res · intro hyp rw [<-hyp, mul_smul] simp #align smul_eq_smul Rubin.GroupActionExt.smul_eq_smul_inv theorem Rubin.GroupActionExt.smul_succ {G α : Type _} (n : ℕ) [Group G] [MulAction G α] {g : G} {x : α} : g ^ n.succ • x = g • g ^ n • x := by rw [pow_succ, mul_smul] #align smul_succ Rubin.GroupActionExt.smul_succ section GroupActionTactic -- open Lean.Elab.Tactic -- open Lean.Meta.Simp open Lean.Parser.Tactic syntax (name := group_action₁) "group_action₁" (location)?: tactic macro_rules | `(tactic| group_action₁ $[at $location]?) => `(tactic| simp only [ smul_smul, Rubin.GroupActionExt.smul_eq_smul_inv, Rubin.GroupActionExt.smul_succ, one_smul, mul_one, one_mul, sub_self, add_neg_self, neg_add_self, neg_neg, tsub_self, <-mul_assoc, one_pow, one_zpow, mul_zpow_neg_one, zpow_zero, mul_zpow, zpow_sub, zpow_ofNat, zpow_neg_one, <-zpow_mul, zpow_add_one, zpow_one_add, zpow_add, Int.ofNat_add, Int.ofNat_mul, Int.ofNat_zero, Int.ofNat_one, Int.mul_neg_eq_neg_mul_symm, Int.neg_mul_eq_neg_mul_symm, Mathlib.Tactic.Group.zpow_trick, Mathlib.Tactic.Group.zpow_trick_one, Mathlib.Tactic.Group.zpow_trick_one', commutatorElement_def ] $[at $location]? ) /-- Tactic for normalizing expressions in group actions, without assuming commutativity, using only the group axioms without any information about which group is manipulated. Example: ```lean example {G α : Type} [Group G] [MulAction G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x := by group_action at h -- normalizes `h` which becomes `h : c = d` rw [←h] -- the goal is now `a*d*d⁻¹ = a` group_action -- which then normalized and closed ``` -/ syntax (name := group_action) "group_action" (location)?: tactic macro_rules | `(tactic| group_action $[at $location]?) => `(tactic| repeat (fail_if_no_progress (group_action₁ $[at $location]? <;> group $[at $location]?)) ) example {G α: Type _} [Group G] [MulAction G α] (g h: G) (x: α): g • h • x = (g * h) • x := by group_action example {G α : Type} [Group G] [MulAction G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x := by group_action at h -- normalizes `h` which becomes `h : c = d` rw [←h] -- the goal is now `a*d*d⁻¹ = a` group_action -- which then normalized and closed example (G α : Type _) [Group G] (a b c : G) [MulAction G α] (x : α) : ⁅a * b, c⁆ • x = (a * ⁅b, c⁆ * a⁻¹ * ⁅a, c⁆) • x := by group_action theorem Rubin.equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y := by intro x_ne_y by_contra h apply x_ne_y convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply] #align equiv.congr_ne Rubin.equiv_congr_ne -- this definitely should be added to mathlib! @[simp, to_additive] theorem Rubin.GroupActionExt.subgroup_mk_smul {G α : Type _} [Group G] [MulAction G α] {S : Subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a := rfl #align Subgroup.mk_smul Rubin.GroupActionExt.subgroup_mk_smul #align add_subgroup.mk_vadd AddSubgroup.mk_vadd ---------------------------------------------------------------- section Rubin variable {G α β : Type _} [Group G] ---------------------------------------------------------------- section Groups theorem Rubin.bracket_mul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto #align bracket_mul Rubin.bracket_mul def Rubin.is_algebraically_disjoint (f g : G) := ∀ h : G, ¬Commute f h → ∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1 #align is_algebraically_disjoint Rubin.is_algebraically_disjoint end Groups ---------------------------------------------------------------- section Actions variable [MulAction G α] @[simp] theorem Rubin.orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) : MulAction.orbit (⊥ : Subgroup G) p = {p} := by ext1 rw [MulAction.mem_orbit_iff] constructor · rintro ⟨⟨_, g_bot⟩, g_to_x⟩ rw [← g_to_x, Set.mem_singleton_iff, Rubin.GroupActionExt.subgroup_mk_smul] exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _ exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩ #align orbit_bot Rubin.orbit_bot -------------------------------- section SmulImage theorem Rubin.GroupActionExt.smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y := congr_arg ((· • ·) g) h #align smul_congr Rubin.GroupActionExt.smul_congr theorem Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x := ⟨fun h => (Rubin.GroupActionExt.smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h => (Rubin.GroupActionExt.smul_congr g h).symm.trans (smul_inv_smul g x)⟩ #align smul_eq_iff_inv_smul_eq Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq theorem Rubin.GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) : g • x = x → g ^ n • x = x := by induction n with | zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff] | succ n n_ih => intro h nth_rw 2 [← (Rubin.GroupActionExt.smul_congr g (n_ih h)).trans h] rw [← mul_smul, ← pow_succ] #align smul_pow_eq_of_smul_eq Rubin.GroupActionExt.smul_pow_eq_of_smul_eq theorem Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) : g • x = x → g ^ n • x = x := by intro h cases n with | ofNat n => let res := Rubin.GroupActionExt.smul_pow_eq_of_smul_eq n h; simp; exact res | negSucc n => let res := smul_eq_iff_inv_smul_eq.mp (Rubin.GroupActionExt.smul_pow_eq_of_smul_eq (1 + n) h); simp rw [add_comm] exact res #align smul_zpow_eq_of_smul_eq Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq def Rubin.GroupActionExt.is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α] [MulAction G β] (f : α → β) := ∀ g : G, ∀ x : α, f (g • x) = g • f x #align is_equivariant Rubin.GroupActionExt.is_equivariant def Rubin.SmulImage.smulImage' (g : G) (U : Set α) := {x | g⁻¹ • x ∈ U} #align subset_img' Rubin.SmulImage.smulImage' def Rubin.SmulImage.smul_preimage' (g : G) (U : Set α) := {x | g • x ∈ U} #align subset_preimg' Rubin.SmulImage.smul_preimage' def Rubin.SmulImage.SmulImage (g : G) (U : Set α) := (· • ·) g '' U #align subset_img Rubin.SmulImage.SmulImage infixl:60 "•''" => Rubin.SmulImage.SmulImage theorem Rubin.SmulImage.smulImage_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U := rfl #align subset_img_def Rubin.SmulImage.smulImage_def theorem Rubin.SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U := by rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x] constructor · rintro ⟨y, yU, gyx⟩ let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.GroupActionExt.smul_congr g⁻¹ gyx exact ygx ▸ yU · intro h exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩ #align mem_smul'' Rubin.SmulImage.mem_smulImage theorem Rubin.SmulImage.mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U := by let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U rw [inv_inv] at msi exact msi #align mem_inv_smul'' Rubin.SmulImage.mem_inv_smulImage theorem Rubin.SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) := by ext rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ← mul_smul, mul_inv_rev] #align mul_smul'' Rubin.SmulImage.mul_smulImage @[simp] theorem Rubin.SmulImage.smulImage_smulImage {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U := (Rubin.SmulImage.mul_smulImage g h U).symm #align smul''_smul'' Rubin.SmulImage.smulImage_smulImage @[simp] theorem Rubin.SmulImage.one_smulImage (U : Set α) : (1 : G)•''U = U := by ext rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul] #align one_smul'' Rubin.SmulImage.one_smulImage theorem Rubin.SmulImage.disjoint_smulImage (g : G) {U V : Set α} : Disjoint U V → Disjoint (g•''U) (g•''V) := by intro disjoint_U_V rw [Set.disjoint_left] rw [Set.disjoint_left] at disjoint_U_V intro x x_in_gU by_contra h exact (disjoint_U_V (mem_smulImage.mp x_in_gU)) (mem_smulImage.mp h) #align disjoint_smul'' Rubin.SmulImage.disjoint_smulImage -- TODO: check if this is actually needed theorem Rubin.SmulImage.smulImage_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V := congr_arg fun W : Set α => g•''W #align smul''_congr Rubin.SmulImage.smulImage_congr theorem Rubin.SmulImage.smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V := by intro h1 x rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage] exact fun h2 => h1 h2 #align smul''_subset Rubin.SmulImage.smulImage_subset theorem Rubin.SmulImage.smulImage_union (g : G) {U V : Set α} : g•''U ∪ V = (g•''U) ∪ (g•''V) := by ext rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage] #align smul''_union Rubin.SmulImage.smulImage_union theorem Rubin.SmulImage.smulImage_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) := by ext rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff] #align smul''_inter Rubin.SmulImage.smulImage_inter theorem Rubin.SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U := by ext constructor · intro h; rw [Set.mem_preimage]; exact mem_smulImage.mp h · intro h; rw [Rubin.SmulImage.mem_smulImage]; exact Set.mem_preimage.mp h #align smul''_eq_inv_preimage Rubin.SmulImage.smulImage_eq_inv_preimage theorem Rubin.SmulImage.smulImage_eq_of_smul_eq {g h : G} {U : Set α} : (∀ x ∈ U, g • x = h • x) → g•''U = h•''U := by intro hU ext x rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage] constructor · intro k; let a := congr_arg ((· • ·) h⁻¹) (hU (g⁻¹ • x) k); simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k · intro k; let a := congr_arg ((· • ·) g⁻¹) (hU (h⁻¹ • x) k); simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k #align smul''_eq_of_smul_eq Rubin.SmulImage.smulImage_eq_of_smul_eq end SmulImage -------------------------------- section Support def Rubin.SmulSupport.Support (α : Type _) [MulAction G α] (g : G) := {x : α | g • x ≠ x} #align support Rubin.SmulSupport.Support theorem Rubin.SmulSupport.support_eq_not_fixed_by {g : G}: Rubin.SmulSupport.Support α g = (MulAction.fixedBy α g)ᶜ := by tauto #align support_eq_not_fixed_by Rubin.SmulSupport.support_eq_not_fixed_by theorem Rubin.SmulSupport.mem_support {x : α} {g : G} : x ∈ Rubin.SmulSupport.Support α g ↔ g • x ≠ x := by tauto #align mem_support Rubin.SmulSupport.mem_support theorem Rubin.SmulSupport.not_mem_support {x : α} {g : G} : x ∉ Rubin.SmulSupport.Support α g ↔ g • x = x := by rw [Rubin.SmulSupport.mem_support, Classical.not_not] #align mem_not_support Rubin.SmulSupport.not_mem_support theorem Rubin.SmulSupport.smul_mem_support {g : G} {x : α} : x ∈ Rubin.SmulSupport.Support α g → g • x ∈ Rubin.SmulSupport.Support α g := fun h => h ∘ smul_left_cancel g #align smul_in_support Rubin.SmulSupport.smul_mem_support theorem Rubin.SmulSupport.inv_smul_mem_support {g : G} {x : α} : x ∈ Rubin.SmulSupport.Support α g → g⁻¹ • x ∈ Rubin.SmulSupport.Support α g := fun h k => h (smul_inv_smul g x ▸ Rubin.GroupActionExt.smul_congr g k) #align inv_smul_in_support Rubin.SmulSupport.inv_smul_mem_support theorem Rubin.SmulSupport.fixed_of_disjoint {g : G} {x : α} {U : Set α} : x ∈ U → Disjoint U (Rubin.SmulSupport.Support α g) → g • x = x := fun x_in_U disjoint_U_support => Rubin.SmulSupport.not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U) #align fixed_of_disjoint Rubin.SmulSupport.fixed_of_disjoint theorem Rubin.SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} : Rubin.SmulSupport.Support α g ⊆ U → g•''U = U := by intro support_in_U ext x cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with xmoved xfixed exact ⟨fun _ => support_in_U xmoved, fun _ => SmulImage.mem_smulImage.mpr (support_in_U (Rubin.SmulSupport.inv_smul_mem_support xmoved))⟩ rw [Rubin.SmulImage.mem_smulImage, GroupActionExt.smul_eq_iff_inv_smul_eq.mp (not_mem_support.mp xfixed)] #align fixes_subset_within_support Rubin.SmulSupport.fixed_smulImage_in_support theorem Rubin.SmulSupport.smulImage_subset_in_support (g : G) (U V : Set α) : U ⊆ V → Rubin.SmulSupport.Support α g ⊆ V → g•''U ⊆ V := fun U_in_V support_in_V => Rubin.SmulSupport.fixed_smulImage_in_support g support_in_V ▸ Rubin.SmulImage.smulImage_subset g U_in_V #align moves_subset_within_support Rubin.SmulSupport.smulImage_subset_in_support theorem Rubin.SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] : Rubin.SmulSupport.Support α (g * h) ⊆ Rubin.SmulSupport.Support α g ∪ Rubin.SmulSupport.Support α h := by intro x x_in_support by_contra h_support let res := not_or.mp h_support exact x_in_support ((mul_smul g h x).trans ((congr_arg ((· • ·) g) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1)) #align support_mul Rubin.SmulSupport.support_mul theorem Rubin.SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h : G) : Rubin.SmulSupport.Support α (h * g * h⁻¹) = h•''Rubin.SmulSupport.Support α g := by ext x rw [Rubin.SmulSupport.mem_support, Rubin.SmulImage.mem_smulImage, Rubin.SmulSupport.mem_support, mul_smul, mul_smul] constructor · intro h1; by_contra h2; exact h1 ((congr_arg ((· • ·) h) h2).trans (smul_inv_smul _ _)) · intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2) #align support_conjugate Rubin.SmulSupport.support_conjugate theorem Rubin.SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) : Rubin.SmulSupport.Support α g⁻¹ = Rubin.SmulSupport.Support α g := by ext x rw [Rubin.SmulSupport.mem_support, Rubin.SmulSupport.mem_support] constructor · intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mp h2) · intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mpr h2) #align support_inv Rubin.SmulSupport.support_inv theorem Rubin.SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j : ℕ) : Rubin.SmulSupport.Support α (g ^ j) ⊆ Rubin.SmulSupport.Support α g := by intro x xmoved by_contra xfixed rw [Rubin.SmulSupport.mem_support] at xmoved induction j with | zero => apply xmoved; rw [pow_zero g, one_smul] | succ j j_ih => apply xmoved let j_ih := (congr_arg ((· • ·) g) (not_not.mp j_ih)).trans (not_mem_support.mp xfixed) simp at j_ih rw [← mul_smul, ← pow_succ] at j_ih exact j_ih #align support_pow Rubin.SmulSupport.support_pow theorem Rubin.SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G) : Rubin.SmulSupport.Support α ⁅g, h⁆ ⊆ Rubin.SmulSupport.Support α h ∪ (g•''Rubin.SmulSupport.Support α h) := by intro x x_in_support by_contra all_fixed rw [Set.mem_union] at all_fixed cases' @or_not (h • x = x) with xfixed xmoved · rw [Rubin.SmulSupport.mem_support, Rubin.bracket_mul, mul_smul, GroupActionExt.smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.SmulSupport.mem_support] at x_in_support exact ((Rubin.SmulSupport.support_conjugate α h g).symm ▸ (not_or.mp all_fixed).2) x_in_support · exact all_fixed (Or.inl xmoved) #align support_comm Rubin.SmulSupport.support_comm theorem Rubin.SmulSupport.disjoint_support_comm (f g : G) {U : Set α} : Rubin.SmulSupport.Support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x := by intro support_in_U disjoint_U x x_in_U have support_conj : Rubin.SmulSupport.Support α (g * f⁻¹ * g⁻¹) ⊆ g•''U := ((Rubin.SmulSupport.support_conjugate α f⁻¹ g).trans (Rubin.SmulImage.smulImage_congr g (Rubin.SmulSupport.support_inv α f))).symm ▸ Rubin.SmulImage.smulImage_subset g support_in_U have goal := (congr_arg ((· • ·) f) (Rubin.SmulSupport.fixed_of_disjoint x_in_U (Set.disjoint_of_subset_right support_conj disjoint_U))).symm simp at goal sorry -- rw [mul_smul, mul_smul] at goal -- exact goal.symm #align disjoint_support_comm Rubin.SmulSupport.disjoint_support_comm end Support -- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G := {g : G | ∀ x : α, g • x = x ∨ x ∈ U} #align rigid_stabilizer' rigidStabilizer' /- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/ def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G where carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x} mul_mem' ha hb x x_notin_U := by rw [mul_smul, hb x x_notin_U, ha x x_notin_U] inv_mem' hg x x_notin_U := Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U) one_mem' x _ := one_smul G x #align rigid_stabilizer rigidStabilizer theorem rist_supported_in_set {g : G} {U : Set α} : g ∈ rigidStabilizer G U → Rubin.SmulSupport.Support α g ⊆ U := fun h x x_in_support => by_contradiction (x_in_support ∘ h x) #align rist_supported_in_set rist_supported_in_set theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) : (rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) := by intro g g_in_ristV x x_notin_U have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V) exact g_in_ristV x x_notin_V #align rist_ss_rist rist_ss_rist end Actions ---------------------------------------------------------------- section TopologicalActions variable [TopologicalSpace α] [TopologicalSpace β] class Rubin.Topological.ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends MulAction G α where continuous : ∀ g : G, Continuous (@SMul.smul G α _ g) #align continuous_mul_action Rubin.Topological.ContinuousMulAction structure Rubin.Topological.equivariant_homeomorph (G α β : Type _) [Group G] [TopologicalSpace α] [TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where equivariant : GroupActionExt.is_equivariant G toFun #align equivariant_homeomorph Rubin.Topological.equivariant_homeomorph theorem Rubin.Topological.equivariant_fun [MulAction G α] [MulAction G β] (h : Rubin.Topological.equivariant_homeomorph G α β) : Rubin.GroupActionExt.is_equivariant G h.toFun := h.equivariant #align equivariant_fun Rubin.Topological.equivariant_fun theorem Rubin.Topological.equivariant_inv [MulAction G α] [MulAction G β] (h : Rubin.Topological.equivariant_homeomorph G α β) : Rubin.GroupActionExt.is_equivariant G h.invFun := by intro g x symm let e := congr_arg h.invFun (h.equivariant g (h.invFun x)) rw [h.left_inv _, h.right_inv _] at e exact e #align equivariant_inv Rubin.Topological.equivariant_inv variable [Rubin.Topological.ContinuousMulAction G α] theorem Rubin.Topological.img_open_open (g : G) (U : Set α) (h : IsOpen U) [Rubin.Topological.ContinuousMulAction G α] : IsOpen (g•''U) := by rw [Rubin.SmulImage.smulImage_eq_inv_preimage] exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h #align img_open_open Rubin.Topological.img_open_open theorem Rubin.Topological.support_open (g : G) [TopologicalSpace α] [T2Space α] [Rubin.Topological.ContinuousMulAction G α] : IsOpen (Rubin.SmulSupport.Support α g) := by apply isOpen_iff_forall_mem_open.mpr intro x xmoved rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩ exact ⟨V ∩ (g⁻¹•''U), fun y yW => -- TODO: don't use @-notation here @Disjoint.ne_of_mem α U V disjoint_U_V (g • y) (SmulImage.mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW)) y (Set.mem_of_mem_inter_left yW), IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U), ⟨x_in_V, SmulImage.mem_inv_smulImage.mpr gx_in_U⟩⟩ #align support_open Rubin.Topological.support_open end TopologicalActions ---------------------------------------------------------------- section FaithfulActions variable [MulAction G α] [FaithfulSMul G α] theorem Rubin.faithful_moves_point₁ {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 := haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm eq_of_smul_eq_smul h3 #align faithful_moves_point Rubin.faithful_moves_point₁ theorem Rubin.faithful_moves_point'₁ {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] : g ≠ 1 → ∃ x : α, g • x ≠ x := fun k => by_contradiction fun h => k <| Rubin.faithful_moves_point₁ <| Classical.not_exists_not.mp h #align faithful_moves_point' Rubin.faithful_moves_point'₁ theorem Rubin.faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} : g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x := by intro g_rigid g_ne_one rcases Rubin.faithful_moves_point'₁ α g_ne_one with ⟨x, xmoved⟩ exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩ #align faithful_rist_moves_point Rubin.faithful_rigid_stabilizer_moves_point theorem Rubin.ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.Support α g).Nonempty := by intro h1 cases' Rubin.faithful_moves_point'₁ α h1 with x h use x exact h #align ne_one_support_nempty Rubin.ne_one_support_nonempty -- FIXME: somehow clashes with another definition theorem Rubin.disjoint_commute₁ {f g : G} : Disjoint (Rubin.SmulSupport.Support α f) (Rubin.SmulSupport.Support α g) → Commute f g := by intro hdisjoint rw [← commutatorElement_eq_one_iff_commute] apply @Rubin.faithful_moves_point₁ _ α intro x rw [Rubin.bracket_mul, mul_smul, mul_smul, mul_smul] cases' @or_not (x ∈ Rubin.SmulSupport.Support α f) with hfmoved hffixed · rw [GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp (Set.disjoint_left.mp hdisjoint hfmoved)), SmulSupport.not_mem_support.mp (Set.disjoint_left.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hfmoved)), smul_inv_smul] cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with hgmoved hgfixed · rw [GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp <| Set.disjoint_right.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hgmoved)), smul_inv_smul, SmulSupport.not_mem_support.mp hffixed] · rw [ GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp hgfixed), GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp hffixed), SmulSupport.not_mem_support.mp hgfixed, SmulSupport.not_mem_support.mp hffixed ] #align disjoint_commute Rubin.disjoint_commute₁ end FaithfulActions ---------------------------------------------------------------- section RubinActions variable [TopologicalSpace α] [TopologicalSpace β] def Rubin.has_no_isolated_points (α : Type _) [TopologicalSpace α] := ∀ x : α, (nhdsWithin x ({x}ᶜ)) ≠ ⊥ #align has_no_isolated_points Rubin.has_no_isolated_points def Rubin.is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := ∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p)) #align is_locally_dense Rubin.is_locally_dense structure Rubin.RubinAction (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α, FaithfulSMul G α where locally_compact : LocallyCompactSpace α hausdorff : T2Space α no_isolated_points : Rubin.has_no_isolated_points α locallyDense : Rubin.is_locally_dense G α #align rubin_action Rubin.RubinAction end RubinActions ---------------------------------------------------------------- section Rubin.Period.period variable [MulAction G α] noncomputable def Rubin.Period.period (p : α) (g : G) : ℕ := sInf {n : ℕ | n > 0 ∧ g ^ n • p = p} #align period Rubin.Period.period theorem Rubin.Period.period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m := by constructor · by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith; rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩ | h; linarith; exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩ exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩ #align period_le_fix Rubin.Period.period_le_fix theorem Rubin.Period.notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0) (period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : ℕ, 0 < i → i < n → g ^ i • p ≠ p) : n ≤ Rubin.Period.period p g := by by_contra period_le exact (pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le)) (Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2 #align notfix_le_period Rubin.Period.notfix_le_period theorem Rubin.Period.notfix_le_period' {p : α} {g : G} {n : ℕ} (n_pos : n > 0) (period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : Fin n, 0 < (i : ℕ) → g ^ (i : ℕ) • p ≠ p) : n ≤ Rubin.Period.period p g := Rubin.Period.notfix_le_period n_pos period_pos fun (i : ℕ) (i_pos : 0 < i) (i_lt_n : i < n) => pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos #align notfix_le_period' Rubin.Period.notfix_le_period' theorem Rubin.Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 := by have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 := Rubin.Period.period_le_fix (by norm_num : 1 > 0) (by group_action : (1 : G) ^ 1 • p = p) linarith #align period_neutral_eq_one Rubin.Period.period_neutral_eq_one def Rubin.Period.periods (U : Set α) (H : Subgroup G) : Set ℕ := {n : ℕ | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n} #align periods Rubin.Period.periods -- TODO: split into multiple lemmas theorem Rubin.Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) : (Rubin.Period.periods U H).Nonempty ∧ BddAbove (Rubin.Period.periods U H) ∧ ∃ (m : ℕ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p := by rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩ have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by intro p g; rw [gm_eq_one g]; group_action have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by use 1 let p := Set.Nonempty.some U_nonempty; use p use 1 constructor · exact Set.Nonempty.some_mem U_nonempty · exact Rubin.Period.period_neutral_eq_one p have periods_bounded : BddAbove (Rubin.Period.periods U H) := by use m; intro some_period hperiod; rcases hperiod with ⟨p, g, hperiod⟩ rw [← hperiod.2] exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2 exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩ #align period_lemma Rubin.Period.periods_lemmas theorem Rubin.Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) : ∃ (p : α) (g : H) (n : ℕ), p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) := by rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩ rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩ use p use g use sSup (Rubin.Period.periods U H) -- TODO: cleanup? exact ⟨ hperiod.1, hperiod.2 ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, hperiod.2, rfl ⟩ #align period_from_exponent Rubin.Period.period_from_exponent theorem Rubin.Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) : ∀ (p : U) (g : H), 0 < Rubin.Period.period (p : α) (g : G) ∧ Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) := by rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩ intro p g have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by use p; use g simp exact ⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, le_csSup periods_bounded period_in_periods⟩ #align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods theorem Rubin.Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p := by cases eq_zero_or_neZero (Rubin.Period.period p g) with | inl h => rw [h]; simp | inr h => exact (Nat.sInf_mem (Nat.nonempty_of_pos_sInf (Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2 #align pow_period_fix Rubin.Period.pow_period_fix end Rubin.Period.period ---------------------------------------------------------------- section AlgebraicDisjointness variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α] def Rubin.Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := ∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥ #align is_locally_moving Rubin.Disjointness.IsLocallyMoving -- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin -- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU, -- by_contra, -- have some_in_U := ildGα U neU.some neU.some_mem, -- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U, -- tauto -- end -- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin -- intro xmoved, -- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩, -- let U := (g⁻¹ •'' V) ∩ W, -- use U, -- split, -- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W, -- split, -- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩, -- exact Set.disjoint_of_subset -- (Set.inter_subset_right (g⁻¹•''V) W) -- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (Set.mem_of_mem_inter_left (mem_smulImage.mp hy)) : g•''U ⊆ V) -- disjoint_V_W.symm -- end -- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin -- intros open_V x_in_V xmoved, -- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩, -- let U := W ∩ V, -- use U, -- split, -- exact is_open.inter open_W open_V, -- split, -- exact ⟨x_in_W,x_in_V⟩, -- split, -- exact Set.inter_subset_right W V, -- exact Set.disjoint_of_subset -- (Set.inter_subset_left W V) -- ((@smul''_inter _ _ _ _ g W V).symm ▸ Set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W) -- disjoint_W -- end -- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : (⋃(i : fin 2 × fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) := begin -- ext, -- simp only [Set.mem_Union, Set.mem_union], -- split, -- { simp only [forall_exists_index], -- intro i, -- fin_cases i; simp {contextual := tt}, }, -- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, }, -- end -- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin -- intros disjoint_f_g h hfh, -- let support_f := support α f, -- -- h is not the identity on support α f -- cases Set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx, -- let x_in_support_f := hx.1, -- let hx_ne_x := mem_support.mp hx.2, -- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V -- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩, -- let ristV_ne_bot := locally_moving V open_V (Set.nonempty_of_mem x_in_V), -- -- let f₂ be a nontrivial element of rigid_stabilizer G V -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩, -- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W -- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩, -- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved), -- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩, -- -- let f₁ be a nontrivial element of rigid_stabilizer G W -- let ristW_ne_bot := locally_moving W open_W (Set.nonempty_of_mem y_in_W), -- rcases (or_iff_right ristW_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩, -- use f₁, use f₂, -- -- note that f₁,f₂ commute with g since their support is in support α f -- split, -- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (Set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g), -- split, -- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g), -- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g -- let k := ⁅f₂,h⁆, -- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V -- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W, -- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm, -- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g. -- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin -- let := (support_comm α k f₁).trans (Set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)), -- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this, -- exact (this.trans $ (Set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support -- end, -- split, -- exact disjoint_commute (Set.disjoint_of_subset_left h3 disjoint_f_g), -- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity. -- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z := -- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W), -- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩, -- by_contra h5, -- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)), -- end -- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U := -- (mul_smul'' g h U).symm -- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin -- intro f_injective, -- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin -- by_contra, -- let := smul_congr (f j) h, -- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this, -- from i_ne_j (f_injective this), -- end in disjoint_nbhd x_moved, -- let ι2 := { p : ι×ι // p.1 ≠ p.2 }, -- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some, -- use U, -- split, -- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1), -- split, -- exact Set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1), -- intros i j i_ne_j, -- let U_inc := Set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩, -- let := (disjoint_smul'' (f j) (Set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm, -- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this, -- from this -- end -- lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℤ) • x) := begin -- intros i j same_img, -- by_contra i_ne_j, -- let same_img' := congr_arg ((•) (g ^ (-(j : ℤ)))) same_img, -- simp only [inv_smul_smul] at same_img', -- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img', -- simp only [add_left_neg, zpow_zero, one_smul] at same_img', -- let ij := |(i:ℤ) - (j:ℤ)|, -- rw ← sub_eq_add_neg at same_img', -- have xfixed : g^ij • x = x := begin -- cases abs_cases ((i:ℤ) - (j:ℤ)), -- { rw ← h.1 at same_img', exact same_img' }, -- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' } -- end, -- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)), -- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)), -- rw zero_sub at neg_le, -- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j), -- rw sub_zero at le_pos, -- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩, -- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed, -- end -- lemma int_to_nat (k : ℤ) (k_pos : k ≥ 1) : k = k.nat_abs := begin -- cases (int.nat_abs_eq k), -- { exact h }, -- { have : -(k.nat_abs : ℤ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg, -- rw ← h at this, by_contra, linarith } -- end -- lemma moves_inj_N {g : G} {x : α} {n : ℕ} (period_ge_n' : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℕ) • x) := begin -- have period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x, -- { intros k one_le_k k_lt_n, -- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)), -- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)), -- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n, -- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this, -- exact this }, -- have := moves_inj period_ge_n, -- done -- end -- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:ℤ) • x) := begin -- apply moves_inj, -- intros k k_ge_1 k_lt_5, -- by_contra xfixed, -- have k_div_12 : k * (12 / k) = 12 := begin -- interval_cases using k_ge_1 k_lt_5; norm_num -- end, -- have veryfixed : g^12 • x = x := begin -- let := smul_zpow_eq_of_smul_eq (12/k) xfixed, -- rw [← zpow_mul,k_div_12] at this, -- norm_cast at this -- end, -- exact xmoves veryfixed -- end -- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin -- intros locally_moving alg_disjoint, -- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty -- by_contra not_disjoint, -- let U := support α f ∩ support α (g^12), -- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint, -- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint -- let x := U_nonempty.some, -- have five_points : function.injective (λi : fin 5, g^(i:ℤ) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem), -- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩, -- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩, -- simp only at disjoint_img_V₁, -- let V := V₀ ∩ V₁, -- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V -- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩), -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- have comm_non_trivial : ¬commute f h := begin -- by_contra comm_trivial, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩, -- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V, -- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm, -- exact z_moved act_comm.symm, -- end, -- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g) -- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩, -- let h' := ⁅f₁,⁅f₂,h⁆⁆, -- -- now observe that supp([f₂, h]) ⊆ V ∪ f₂(V), and by the same reasoning supp(h')⊆V∪f₁(V)∪f₂(V)∪f₁f₂(V) -- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV), -- have support_h' : support α h' ⊆ ⋃(i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin -- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)), -- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this, -- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V), -- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u, -- exact rw_u.symm ▸ this, -- end, -- -- since h' is nontrivial, it has at least one point p in its support -- cases faithful_moves_point' α h'_non_trivial with p p_moves, -- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h') -- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin -- intro i, -- rw mem_support, -- by_contra p_fixed, -- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed, -- exact p_moves p_fixed, -- end, -- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂} -- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial, -- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some, -- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩, -- clear h_1_w h_1_h_h_w pigeonhole, -- let k := f₁^(choice i).1.val*f₂^(choice i).2.val, -- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice, -- rw ← same_choice }, -- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec, -- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec, -- -- but since g^(j−i)(V) is disjoint from V and k commutes with g, we know that g^(j−i)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V). -- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin -- let := (disjoint_smul'' (g^(-(i.val+j.val : ℤ))) (disjoint_img_V₁ i j i_ne_j)).symm, -- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this, -- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this, -- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this -- end, -- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val), -- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin -- let this := disjoint_smul'' k g_disjoint, -- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val, -- ← (k_commutes.symm.inv_left.pow_left i.val).eq, -- ← (k_commutes.symm.inv_left.pow_left j.val).eq, -- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this, -- from this -- end, -- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j) -- end -- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin -- intro alg_disjoint, -- by_contra non_commute, -- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩, -- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d, -- tauto -- end -- section remark_1_3 -- def G := equiv.perm (fin 2) -- def σ := equiv.swap (0 : fin 2) (1 : fin 2) -- example : is_algebraically_disjoint σ σ := begin -- intro h, -- fin_cases h, -- intro hyp1, -- exfalso, -- swap, intro hyp2, exfalso, -- -- is commute decidable? cc, -- sorry -- dec_trivial -- sorry -- second sorry needed -- end -- end remark_1_3 end AlgebraicDisjointness ---------------------------------------------------------------- section Rubin.RegularSupport.RegularSupport variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] def Rubin.RegularSupport.InteriorClosure (U : Set α) := interior (closure U) #align interior_closure Rubin.RegularSupport.InteriorClosure theorem Rubin.RegularSupport.is_open_interiorClosure (U : Set α) : IsOpen (Rubin.RegularSupport.InteriorClosure U) := isOpen_interior #align is_open_interior_closure Rubin.RegularSupport.is_open_interiorClosure theorem Rubin.RegularSupport.interiorClosure_mono {U V : Set α} : U ⊆ V → Rubin.RegularSupport.InteriorClosure U ⊆ Rubin.RegularSupport.InteriorClosure V := interior_mono ∘ closure_mono #align interior_closure_mono Rubin.RegularSupport.interiorClosure_mono def Set.is_regular_open (U : Set α) := Rubin.RegularSupport.InteriorClosure U = U #align set.is_regular_open Set.is_regular_open theorem Set.is_regular_def (U : Set α) : U.is_regular_open ↔ Rubin.RegularSupport.InteriorClosure U = U := by rfl #align set.is_regular_def Set.is_regular_def theorem Rubin.RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) := by intro U_open x x_in_U apply interior_mono subset_closure rw [U_open.interior_eq] exact x_in_U #align is_open.in_closure Rubin.RegularSupport.IsOpen.in_closure theorem Rubin.RegularSupport.IsOpen.interiorClosure_subset {U : Set α} : IsOpen U → U ⊆ Rubin.RegularSupport.InteriorClosure U := fun h => (subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure) #align is_open.interior_closure_subset Rubin.RegularSupport.IsOpen.interiorClosure_subset theorem Rubin.RegularSupport.regular_interior_closure (U : Set α) : (Rubin.RegularSupport.InteriorClosure U).is_regular_open := by rw [Set.is_regular_def] apply Set.Subset.antisymm exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure)) exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure) #align regular_interior_closure Rubin.RegularSupport.regular_interior_closure def Rubin.RegularSupport.RegularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) := Rubin.RegularSupport.InteriorClosure (Rubin.SmulSupport.Support α g) #align regular_support Rubin.RegularSupport.RegularSupport theorem Rubin.RegularSupport.regularSupport_regular {g : G} : (Rubin.RegularSupport.RegularSupport α g).is_regular_open := Rubin.RegularSupport.regular_interior_closure _ #align regular_regular_support Rubin.RegularSupport.regularSupport_regular theorem Rubin.RegularSupport.support_subset_regularSupport [T2Space α] (g : G) : Rubin.SmulSupport.Support α g ⊆ Rubin.RegularSupport.RegularSupport α g := Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g) #align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport theorem Rubin.RegularSupport.mem_regularSupport (g : G) (U : Set α) : U.is_regular_open → g ∈ rigidStabilizer G U → Rubin.RegularSupport.RegularSupport α g ⊆ U := fun U_ro g_moves => (Set.is_regular_def _).mp U_ro ▸ Rubin.RegularSupport.interiorClosure_mono (rist_supported_in_set g_moves) #align mem_regular_support Rubin.RegularSupport.mem_regularSupport -- FIXME: Weird naming? def Rubin.RegularSupport.AlgebraicCentralizer (f : G) : Set G := {h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g} #align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer end Rubin.RegularSupport.RegularSupport -- ---------------------------------------------------------------- -- section finite_exponent -- lemma coe_nat_fin {n i : ℕ} (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩ -- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] -- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : ℕ} -- (n_pos : 0 < n) -- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V)) : -- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := -- begin -- intros q hq i i_pos hcontra, -- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, done }, -- have hcontra' : g ^ (i : ℕ) • (q : α) ∈ g ^ (i : ℕ) •'' V, exact ⟨ q, hq, rfl ⟩, -- have giq_notin_V := Set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra', -- exact ((by done : g ^ 0•''V = V) ▸ giq_notin_V) hcontra -- end -- lemma moves_inj_period {g : G} {p : α} {n : ℕ} (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ℕ) • p) := begin -- have period_ge_n : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • p ≠ p, -- { intros k one_le_k k_lt_n gkp_eq_p, -- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p, -- rw period_eq_n at this, -- linarith }, -- exact moves_inj_N period_ge_n -- end -- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α] -- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) : -- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 := -- begin -- intro U_nonempty, -- by_contra exp_ne_zero, -- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩, -- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩, -- dsimp at disj', -- let V := U ∩ V', -- have V_ss_U : V ⊆ U := Set.inter_subset_left U V', -- have V'_ss_V : V ⊆ V' := Set.inter_subset_right U V', -- have V_open : is_open V := is_open.inter U_open V'_open, -- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩, -- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V), -- { intros i j i_ne_j W W_ss_giV W_ss_gjV, -- exact disj' i j i_ne_j -- (Set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V)) -- (Set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) }, -- have ristV_ne_bot := locally_moving V V_open (Set.nonempty_of_mem p_in_V), -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩, -- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g), -- have giq_notin_V : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V, -- have giq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ≠ (q : α), -- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, }, -- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 }, -- -- We have (hg)^i q = g^i q for all 0 < i < n -- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ℕ) < n → (h * g) ^ (i : ℕ) • q = (g : G) ^ (i : ℕ) • q, -- { intros i, induction (i : ℕ) with i', -- { intro, repeat {rw pow_zero} }, -- { intro succ_i'_lt_n, -- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ], -- have image_q_notin_V : g ^ i'.succ • q ∉ V, -- { have i'succ_ne_zero := ne_zero.pos i'.succ, -- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero }, -- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } }, -- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n -- have hgiq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → (h * g) ^ (i : ℕ) • q ≠ q, -- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) }, -- -- This even holds for i = n -- have hgnq_ne_q : (h * g) ^ n • q ≠ q, -- { -- Rewrite (hg)^n q = hg^n q -- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred), -- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩, -- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n), -- have : n = (i' : ℕ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm, -- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this], -- -- Now it follows from g^n q = q and h q ≠ q -- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q, -- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n, -- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) }, -- -- Finally, we derive a contradiction -- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U), -- rw ← n_eq_Sup at period_pos_le_n, -- cases (lt_or_eq_of_le period_pos_le_n.2), -- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) }, -- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) } -- end -- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry -- end finite_exponent -- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β] -- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry end Rubin