import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Subgroup.Basic import Mathlib.GroupTheory.Subgroup.Actions import Mathlib.GroupTheory.Commutator import Mathlib.Topology.Basic import Mathlib.Tactic.FinCases import Mathlib.Tactic.IntervalCases import Rubin.RigidStabilizer import Rubin.SmulImage import Rubin.Topological import Rubin.FaithfulAction namespace Rubin class LocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := locally_moving: ∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥ #align is_locally_moving Rubin.LocallyMoving namespace LocallyMoving theorem get_nontrivial_rist_elem {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] [h_lm : LocallyMoving G α] {U: Set α} (U_open : IsOpen U) (U_nonempty : U.Nonempty) : ∃ x : G, x ∈ RigidStabilizer G U ∧ x ≠ 1 := by have rist_ne_bot := h_lm.locally_moving U U_open U_nonempty exact (or_iff_right rist_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) end LocallyMoving -- def AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) := -- ∀ h : G, -- ¬Commute f h → -- ∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1 -- #align is_algebraically_disjoint Rubin.AlgebraicallyDisjoint -- TODO: move to a different file def NonCommuteWith {G : Type _} [Group G] (g : G) : Type* := { f : G // ¬Commute f g } namespace NonCommuteWith theorem not_commute {G : Type _} [Group G] (g : G) (f : NonCommuteWith g) : ¬Commute f.val g := f.prop theorem symm {G : Type _} [Group G] (g : G) (f : NonCommuteWith g) : ¬Commute g f.val := by intro h exact f.prop h.symm def mk {G : Type _} [Group G] {f g : G} (nc: ¬Commute f g) : NonCommuteWith g := ⟨f, nc⟩ def mk_symm {G : Type _} [Group G] {f g : G} (nc: ¬Commute f g) : NonCommuteWith f := ⟨g, (by intro h symm at h exact nc h )⟩ @[simp] theorem coe_mk {G : Type _} [Group G] {f g : G} {nc: ¬Commute f g}: (mk nc).val = f := by unfold mk simp @[simp] theorem coe_mk_symm {G : Type _} [Group G] {f g : G} {nc: ¬Commute f g}: (mk_symm nc).val = g := by unfold mk_symm simp end NonCommuteWith class AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) := pair : ∀ (_h : NonCommuteWith f), G × G pair_commute : ∀ (h : NonCommuteWith f), Commute (pair h).1 g ∧ Commute (pair h).2 g ∧ Commute ⁅(pair h).1, ⁅(pair h).2, h.val⁆⁆ g pair_nontrivial : ∀ (h : NonCommuteWith f), ⁅(pair h).1, ⁅(pair h).2, h.val⁆⁆ ≠ 1 theorem AlgebraicallyDisjoint_mk {G : Type _} [Group G] {f g : G} (mk_thm : ∀ h : G, ¬Commute f h → ∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1 ) : AlgebraicallyDisjoint f g where pair := fun h => ((mk_thm h.val h.symm).choose, (mk_thm h.val h.symm).choose_spec.choose) pair_commute := fun h => by -- Don't look at this. You have been warned. repeat' constructor · exact (mk_thm h.val h.symm).choose_spec.choose_spec.left · exact (mk_thm h.val h.symm).choose_spec.choose_spec.right.left · exact (mk_thm h.val h.symm).choose_spec.choose_spec.right.right.left pair_nontrivial := fun h => by exact (mk_thm h.val h.symm).choose_spec.choose_spec.right.right.right namespace AlgebraicallyDisjoint variable {G : Type _} variable [Group G] variable {f g : G} def comm_elem (disj : AlgebraicallyDisjoint f g) : ∀ (_h : NonCommuteWith f), G := fun h => ⁅(disj.pair h).1, ⁅(disj.pair h).2, h.val⁆⁆ theorem fst_commute (disj : AlgebraicallyDisjoint f g) : ∀ (h : NonCommuteWith f), Commute (disj.pair h).1 g := fun h => (disj.pair_commute h).1 theorem snd_commute (disj : AlgebraicallyDisjoint f g) : ∀ (h : NonCommuteWith f), Commute (disj.pair h).2 g := fun h => (disj.pair_commute h).2.1 theorem comm_elem_commute (disj : AlgebraicallyDisjoint f g) : ∀ (h : NonCommuteWith f), Commute (disj.comm_elem h) g := fun h => (disj.pair_commute h).2.2 end AlgebraicallyDisjoint @[simp] theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) : MulAction.orbit (⊥ : Subgroup G) p = {p} := by ext1 rw [MulAction.mem_orbit_iff] constructor · rintro ⟨⟨_, g_bot⟩, g_to_x⟩ rw [← g_to_x, Set.mem_singleton_iff, Subgroup.mk_smul] exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _ exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩ #align orbit_bot Rubin.orbit_bot variable {G α : Type _} variable [Group G] variable [TopologicalSpace α] variable [ContinuousMulAction G α] variable [FaithfulSMul G α] instance dense_locally_moving [T2Space α] (H_nip : has_no_isolated_points α) (H_ld : LocallyDense G α) : LocallyMoving G α where locally_moving := by intros U _ H_nonempty by_contra h_rs have ⟨elem, ⟨_, some_in_orbit⟩⟩ := H_ld.nonEmpty H_nonempty have H_nebot := has_no_isolated_points_neBot H_nip elem rw [h_rs] at some_in_orbit simp at some_in_orbit lemma disjoint_nbhd [T2Space α] {g : G} {x : α} (x_moved: g • x ≠ x) : ∃ U: Set α, IsOpen U ∧ x ∈ U ∧ Disjoint U (g •'' U) := by have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 (g • x) x x_moved let U := (g⁻¹ •'' V) ∩ W use U constructor { -- NOTE: if this is common, then we should make a tactic for solving IsOpen goals exact IsOpen.inter (img_open_open g⁻¹ V V_open) W_open } constructor { simp rw [mem_inv_smulImage] trivial } { apply Set.disjoint_of_subset · apply Set.inter_subset_right · intro y hy; show y ∈ V rw [<-smul_inv_smul g y] rw [<-mem_inv_smulImage] rw [mem_smulImage] at hy simp at hy exact hy.left · exact disjoint_V_W.symm } lemma disjoint_nbhd_in [T2Space α] {g : G} {x : α} {V : Set α} (V_open : IsOpen V) (x_in_V : x ∈ V) (x_moved : g • x ≠ x) : ∃ U : Set α, IsOpen U ∧ x ∈ U ∧ U ⊆ V ∧ Disjoint U (g •'' U) := by have ⟨W, W_open, x_in_W, disjoint_W_img⟩ := disjoint_nbhd x_moved use W ∩ V simp constructor { apply IsOpen.inter <;> assumption } constructor { constructor <;> assumption } show Disjoint (W ∩ V) (g •'' W ∩ V) apply Set.disjoint_of_subset · exact Set.inter_subset_left W V · show g •'' W ∩ V ⊆ g •'' W rewrite [smulImage_inter] exact Set.inter_subset_left _ _ · exact disjoint_W_img -- Kind of a boring lemma but okay lemma rewrite_Union (f : Fin 2 × Fin 2 → Set α) : (⋃(i : Fin 2 × Fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) := by ext x simp only [Set.mem_iUnion, Set.mem_union] constructor · rewrite [forall_exists_index] intro i fin_cases i <;> simp only [Fin.zero_eta, Fin.mk_one] <;> intro h <;> simp only [h, true_or, or_true] · rintro ((h|h)|(h|h)) <;> exact ⟨_, h⟩ -- TODO: modify the proof to be less "let everything"-y, especially the first half -- TODO: use the new class thingy to write a cleaner proof? lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp_disjoint : Disjoint (Support α f) (Support α g)) : AlgebraicallyDisjoint f g := by apply AlgebraicallyDisjoint_mk intros h h_not_commute -- h is not the identity on `Support α f` have f_h_not_disjoint := (mt (disjoint_commute (G := G) (α := α)) h_not_commute) have ⟨x, ⟨x_in_supp_f, x_in_supp_h⟩⟩ := Set.not_disjoint_iff.mp f_h_not_disjoint have hx_ne_x := mem_support.mp x_in_supp_h -- Since α is Hausdoff, there is a nonempty V ⊆ Support α f, with h •'' V disjoint from V have ⟨V, V_open, x_in_V, V_in_support, disjoint_img_V⟩ := disjoint_nbhd_in (support_open f) x_in_supp_f hx_ne_x -- let f₂ be a nontrivial element of the RigidStabilizer G V let ⟨f₂, f₂_in_rist_V, f₂_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem x_in_V) -- Re-use the Hausdoff property of α again, this time yielding W ⊆ V let ⟨y, y_moved⟩ := faithful_moves_point' α f₂_ne_one have y_in_V := (rist_supported_in_set f₂_in_rist_V) (mem_support.mpr y_moved) let ⟨W, W_open, y_in_W, W_in_V, disjoint_img_W⟩ := disjoint_nbhd_in V_open y_in_V y_moved -- Let f₁ be a nontrivial element of RigidStabilizer G W let ⟨f₁, f₁_in_rist_W, f₁_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open (Set.nonempty_of_mem y_in_W) use f₁ use f₂ constructor <;> try constructor · apply disjoint_commute (α := α) apply Set.disjoint_of_subset_left _ supp_disjoint calc Support α f₁ ⊆ W := rist_supported_in_set f₁_in_rist_W W ⊆ V := W_in_V V ⊆ Support α f := V_in_support · apply disjoint_commute (α := α) apply Set.disjoint_of_subset_left _ supp_disjoint calc Support α f₂ ⊆ V := rist_supported_in_set f₂_in_rist_V V ⊆ Support α f := V_in_support -- We claim that [f₁, [f₂, h]] is a nontrivial elelement of Centralizer G g let k := ⁅f₂, h⁆ have h₂ : ∀ z ∈ W, f₂ • z = k • z := by intro z z_in_W simp symm apply disjoint_support_comm f₂ h _ disjoint_img_V · exact W_in_V z_in_W · exact rist_supported_in_set f₂_in_rist_V constructor · -- then `k*f₁⁻¹*k⁻¹` is supported on k W = f₂ W, -- so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g. apply disjoint_commute (α := α) apply Set.disjoint_of_subset_left _ supp_disjoint have supp_f₁_subset_W := (rist_supported_in_set f₁_in_rist_W) show Support α ⁅f₁, ⁅f₂, h⁆⁆ ⊆ Support α f calc Support α ⁅f₁, k⁆ = Support α ⁅k, f₁⁆ := by rw [<-commutatorElement_inv, support_inv] _ ⊆ Support α f₁ ∪ (k •'' Support α f₁) := support_comm α k f₁ _ ⊆ W ∪ (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W _ ⊆ W ∪ (k •'' W) := by apply Set.union_subset_union_right exact (smulImage_subset k supp_f₁_subset_W) _ = W ∪ (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂] _ ⊆ V ∪ (f₂ •'' W) := Set.union_subset_union_left _ W_in_V _ ⊆ V ∪ V := by apply Set.union_subset_union_right apply smulImage_subset_in_support f₂ W V W_in_V exact rist_supported_in_set f₂_in_rist_V _ ⊆ V := by rw [Set.union_self] _ ⊆ Support α f := V_in_support · -- finally, [f₁,k] agrees with f₁ on W, so is not the identity. have h₄: ∀ z ∈ W, ⁅f₁, k⁆ • z = f₁ • z := by apply disjoint_support_comm f₁ k exact rist_supported_in_set f₁_in_rist_W rw [<-smulImage_eq_of_smul_eq h₂] exact disjoint_img_W let ⟨z, z_in_W, z_moved⟩ := faithful_rigid_stabilizer_moves_point f₁_in_rist_W f₁_ne_one by_contra h₅ rw [<-h₄ z z_in_W] at z_moved have h₆ : ⁅f₁, ⁅f₂, h⁆⁆ • z = z := by rw [h₅, one_smul] exact z_moved h₆ #align proposition_1_1_1 Rubin.proposition_1_1_1 @[simp] lemma smulImage_mul {g h : G} {U : Set α} : g •'' (h •'' U) = (g*h) •'' U := (mul_smulImage g h U) lemma smul_inj_moves {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : ((f j)⁻¹ * f i) • x ≠ x := by by_contra h apply i_ne_j apply f_smul_inj group_action group_action at h exact h def smul_inj_nbhd {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : Set α := (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose lemma smul_inj_nbhd_open {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : IsOpen (smul_inj_nbhd i_ne_j f_smul_inj) := by exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.1 lemma smul_inj_nbhd_mem {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : x ∈ (smul_inj_nbhd i_ne_j f_smul_inj) := by exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.1 lemma smul_inj_nbhd_disjoint {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : Disjoint (smul_inj_nbhd i_ne_j f_smul_inj) ((f j)⁻¹ * f i •'' (smul_inj_nbhd i_ne_j f_smul_inj)) := by exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.2 lemma disjoint_nbhd_fin {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)): ∃ U : Set α, IsOpen U ∧ x ∈ U ∧ (∀ (i j : ι), i ≠ j → Disjoint (f i •'' U) (f j •'' U)) := by let ι₂ := { p : ι × ι | p.1 ≠ p.2 } let U := ⋂(p : ι₂), smul_inj_nbhd p.prop f_smul_inj use U -- The notations provided afterwards tend to be quite ugly because we used `Exists.choose`, -- but the idea is that this all boils down to applying `Exists.choose_spec`, except in the disjointness case, -- where we transform `Disjoint (f i •'' U) (f j •'' U)` into `Disjoint U ((f i)⁻¹ * f j •'' U)` -- and transform both instances of `U` into `N`, the neighborhood of the chosen `(i, j) ∈ ι₂` repeat' constructor · apply isOpen_iInter_of_finite intro ⟨⟨i, j⟩, i_ne_j⟩ apply smul_inj_nbhd_open · apply Set.mem_iInter.mpr intro ⟨⟨i, j⟩, i_ne_j⟩ apply smul_inj_nbhd_mem · intro i j i_ne_j let N := smul_inj_nbhd i_ne_j f_smul_inj have U_subset_N : U ⊆ N := Set.iInter_subset (fun (⟨⟨i, j⟩, i_ne_j⟩ : ι₂) => (smul_inj_nbhd i_ne_j f_smul_inj)) ⟨⟨i, j⟩, i_ne_j⟩ rw [disjoint_comm, smulImage_disjoint_mul] apply Set.disjoint_of_subset U_subset_N · apply smulImage_subset exact U_subset_N · exact smul_inj_nbhd_disjoint i_ne_j f_smul_inj lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g^k • x ≠ x) : Function.Injective (fun (i : Fin n) => g^(i : ℤ) • x) := by intro a b same_img by_contra a_ne_b let abs_diff := |(a : ℤ) - (b : ℤ)| apply period_ge_n abs_diff _ _ _ { show 1 ≤ abs_diff unfold_let rw [<-zero_add 1, Int.add_one_le_iff] apply abs_pos.mpr apply sub_ne_zero.mpr simp apply Fin.vne_of_ne apply a_ne_b } { show abs_diff < (n : ℤ) apply abs_lt.mpr constructor · rw [<-zero_sub] apply Int.sub_lt_sub_of_le_of_lt <;> simp · rw [<-sub_zero (n : ℤ)] apply Int.sub_lt_sub_of_lt_of_le <;> simp } { show g^abs_diff • x = x simp at same_img group_action at same_img rw [neg_add_eq_sub] at same_img cases abs_cases ((a : ℤ) - (b : ℤ)) with | inl h => unfold_let rw [h.1] exact same_img | inr h => unfold_let rw [h.1] rw [smul_eq_iff_eq_inv_smul] group_action symm exact same_img } -- Note: this can be strengthened to `k ≥ 0` lemma natAbs_eq_of_pos' (k : ℤ) (k_ge_one : k ≥ 1) : k = k.natAbs := by cases Int.natAbs_eq k with | inl _ => assumption | inr h => exfalso have k_lt_one : k < 1 := by calc k ≤ 0 := by rw [h] apply nonpos_of_neg_nonneg rw [neg_neg] apply Int.ofNat_nonneg _ < 1 := by norm_num exact ((lt_iff_not_ge _ _).mp k_lt_one) k_ge_one lemma period_ge_n_cast {g : G} {x : α} {n : ℕ} : (∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) → (∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) := by intro period_ge_n' intro k one_le_k k_lt_n have one_le_abs_k : 1 ≤ k.natAbs := by rw [<-Nat.cast_le (α := ℤ)] norm_num calc 1 ≤ k := one_le_k _ ≤ |k| := le_abs_self k have abs_k_lt_n : k.natAbs < n := by rw [<-Nat.cast_lt (α := ℤ)] norm_num calc |k| = k := abs_of_pos one_le_k _ < n := k_lt_n have res := period_ge_n' k.natAbs one_le_abs_k abs_k_lt_n rw [<-zpow_ofNat, Int.coe_natAbs, abs_of_pos _] at res exact res exact one_le_k instance {g : G} {x : α} {n : ℕ} : Coe (∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) (∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) where coe := period_ge_n_cast lemma moves_1234_of_moves_12 {g : G} {x : α} (g12_moves : g^12 • x ≠ x) : Function.Injective (fun i : Fin 5 => g^(i : ℤ) • x) := by apply moves_inj intros k k_ge_1 k_lt_5 simp at k_lt_5 by_contra x_fixed have k_div_12 : k ∣ 12 := by -- Note: norm_num does not support ℤ.dvd yet, nor ℤ.mod, nor Int.natAbs, nor Int.div, etc. have h: (12 : ℤ) = (12 : ℕ) := by norm_num rw [h, Int.ofNat_dvd_right] apply Nat.dvd_of_mod_eq_zero interval_cases k all_goals unfold Int.natAbs all_goals norm_num have g12_fixed : g^12 • x = x := by rw [<-zpow_ofNat] simp rw [<-Int.mul_ediv_cancel' k_div_12] have res := smul_zpow_eq_of_smul_eq (12/k) x_fixed group_action at res exact res exact g12_moves g12_fixed lemma proposition_1_1_2 [T2Space α] [h_lm : LocallyMoving G α] (f g : G) [h_disj : AlgebraicallyDisjoint f g] : Disjoint (Support α f) (Support α (g^12)) := by by_contra not_disjoint let U := Support α f ∩ Support α (g^12) have U_nonempty : U.Nonempty := by apply Set.not_disjoint_iff_nonempty_inter.mp exact not_disjoint -- Since G is Hausdorff, we can find a nonempty set V ⊆ such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint let x := U_nonempty.some have x_in_U : x ∈ U := Set.Nonempty.some_mem U_nonempty have fx_moves : f • x ≠ x := Set.inter_subset_left _ _ x_in_U have five_points : Function.Injective (fun i : Fin 5 => g^(i : ℤ) • x) := by apply moves_1234_of_moves_12 exact (Set.inter_subset_right _ _ x_in_U) have U_open: IsOpen U := (IsOpen.inter (support_open f) (support_open (g^12))) let ⟨V₀, V₀_open, x_in_V₀, V₀_in_support, disjoint_img_V₀⟩ := disjoint_nbhd_in U_open x_in_U fx_moves let ⟨V₁, V₁_open, x_in_V₁, disjoint_img_V₁⟩ := disjoint_nbhd_fin five_points let V := V₀ ∩ V₁ -- Let h be a nontrivial element of the RigidStabilizer G V let ⟨h, ⟨h_in_ristV, h_ne_one⟩⟩ := h_lm.get_nontrivial_rist_elem (IsOpen.inter V₀_open V₁_open) (Set.nonempty_of_mem ⟨x_in_V₀, x_in_V₁⟩) have V_disjoint_smulImage: Disjoint V (f •'' V) := by apply Set.disjoint_of_subset · exact Set.inter_subset_left _ _ · apply smulImage_subset exact Set.inter_subset_left _ _ · exact disjoint_img_V₀ have comm_non_trivial : ¬Commute f h := by by_contra comm_trivial let ⟨z, z_in_V, z_moved⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one apply z_moved nth_rewrite 2 [<-one_smul G z] rw [<-commutatorElement_eq_one_iff_commute.mpr comm_trivial.symm] symm apply disjoint_support_comm h f · exact rist_supported_in_set h_in_ristV · exact V_disjoint_smulImage · exact z_in_V -- Since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g) let f' := NonCommuteWith.mk_symm comm_non_trivial let f_pair := h_disj.pair f' let f₁ := f_pair.1 let f₂ := f_pair.2 let h' := h_disj.comm_elem f' have f₁_commutes : Commute f₁ g := h_disj.fst_commute f' have f₂_commutes : Commute f₂ g := h_disj.snd_commute f' have h'_commutes : Commute h' g := h_disj.comm_elem_commute f' have h'_nontrivial : h' ≠ 1 := h_disj.pair_nontrivial f' have support_f₂_h : Support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := by calc Support α ⁅f₂, h⁆ ⊆ Support α h ∪ (f₂ •'' Support α h) := support_comm α f₂ h _ ⊆ V ∪ (f₂ •'' Support α h) := by apply Set.union_subset_union_left exact rist_supported_in_set h_in_ristV _ ⊆ V ∪ (f₂ •'' V) := by apply Set.union_subset_union_right apply smulImage_subset exact rist_supported_in_set h_in_ristV have support_h' : Support α h' ⊆ ⋃(i : Fin 2 × Fin 2), (f₁^(i.1.val) * f₂^(i.2.val)) •'' V := by rw [rewrite_Union] simp (config := {zeta := false}) rw [<-smulImage_mul, <-smulImage_union] calc Support α h' ⊆ Support α ⁅f₂,h⁆ ∪ (f₁ •'' Support α ⁅f₂, h⁆) := support_comm α f₁ ⁅f₂,h⁆ _ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' Support α ⁅f₂, h⁆) := by apply Set.union_subset_union_left exact support_f₂_h _ ⊆ V ∪ (f₂ •'' V) ∪ (f₁ •'' V ∪ (f₂ •'' V)) := by apply Set.union_subset_union_right apply smulImage_subset f₁ exact support_f₂_h -- Since h' is nontrivial, it has at least one point p in its support let ⟨p, p_moves⟩ := faithful_moves_point' α h'_nontrivial -- Since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h') have gi_in_support : ∀ (i: Fin 5), g^(i.val) • p ∈ Support α h' := by intro i rw [mem_support] by_contra p_fixed rw [<-mul_smul, h'_commutes.pow_right, mul_smul] at p_fixed group_action at p_fixed exact p_moves p_fixed -- The next section gets tricky, so let us clear away some stuff first :3 clear h'_commutes h'_nontrivial clear V₀_open x_in_V₀ V₀_in_support disjoint_img_V₀ clear V₁_open x_in_V₁ clear five_points h_in_ristV h_ne_one V_disjoint_smulImage clear support_f₂_h -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, -- say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂} let pigeonhole : Fintype.card (Fin 5) > Fintype.card (Fin 2 × Fin 2) := by trivial let choice_pred := fun (i : Fin 5) => (Set.mem_iUnion.mp (support_h' (gi_in_support i))) let choice := fun (i : Fin 5) => (choice_pred i).choose let ⟨i, _, j, _, i_ne_j, same_choice⟩ := Finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (fun (i : Fin 5) _ => Finset.mem_univ (choice i)) let k := f₁^(choice i).1.val * f₂^(choice i).2.val have same_k : f₁^(choice j).1.val * f₂^(choice j).2.val = k := by rw [<-same_choice] have gi : g^i.val • p ∈ k •'' V := (choice_pred i).choose_spec have gk : g^j.val • p ∈ k •'' V := by have gk' := (choice_pred j).choose_spec rw [same_k] at gk' exact gk' -- Since g^(j-i)(V) is disjoint from V and k commutes with g, -- we know that g^(j−i)k(V) is disjoint from k(V), -- which leads to a contradiction since g^i(p) and g^j(p) both lie in k(V). have g_disjoint : Disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := by apply smulImage_disjoint_subset (Set.inter_subset_right V₀ V₁) group rw [smulImage_disjoint_inv_pow] group apply disjoint_img_V₁ symm; exact i_ne_j have k_commutes: Commute k g := by apply Commute.mul_left · exact f₁_commutes.pow_left _ · exact f₂_commutes.pow_left _ clear f₁_commutes f₂_commutes have g_k_disjoint : Disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := by repeat rw [mul_smulImage] repeat rw [<-inv_pow] repeat rw [k_commutes.symm.inv_left.pow_left] repeat rw [<-mul_smulImage k] repeat rw [inv_pow] exact disjoint_smulImage k g_disjoint apply Set.disjoint_left.mp g_k_disjoint · rw [mem_inv_smulImage] exact gi · rw [mem_inv_smulImage] exact gk lemma remark_1_2 (f g : G) [h_disj : AlgebraicallyDisjoint f g]: Commute f g := by by_contra non_commute let g' := NonCommuteWith.mk_symm non_commute let nontrivial := h_disj.pair_nontrivial g' let idk := h_disj.snd_commute g' simp at nontrivial rw [commutatorElement_eq_one_iff_commute.mpr idk] at nontrivial rw [commutatorElement_one_right] at nontrivial tauto -- section remark_1_3 -- def G := equiv.perm (fin 2) -- def σ := equiv.swap (0 : fin 2) (1 : fin 2) -- example : is_algebraically_disjoint σ σ := begin -- intro h, -- fin_cases h, -- intro hyp1, -- exfalso, -- swap, intro hyp2, exfalso, -- -- is commute decidable? cc, -- sorry -- dec_trivial -- sorry -- second sorry needed -- end -- end remark_1_3 end Rubin