/- Copyright (c) 2023 Laurent Bartholdi. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Laurent Bartholdi -/ import tactic --import group_action_tactic.lean import data.finset.basic import data.finset.card import data.fintype.perm import group_theory.subgroup.basic import group_theory.commutator import group_theory.group_action.basic import group_theory.exponent import group_theory.perm.basic import topology.basic import topology.subset_properties import topology.separation import topology.homeomorph --@[simp] lemma smul_smul' {G α : Type*} [group G] [mul_action G α] {g h : G} {x : α} : g • h • x = (g*h) • x := (mul_smul g h x).symm --@[simp] lemma smul_eq_smul {G α : Type*} [group G] [mul_action G α] {g h : G} {x y : α} : g • x = h • y ↔ (h⁻¹*g) • x = y := begin split, { intro hyp, let := congr_arg ((•) h⁻¹) hyp, rw [← mul_smul,← mul_smul,mul_left_inv,one_smul] at this, from this }, { intro hyp, let := congr_arg ((•) h) hyp, rw [← mul_smul,← mul_assoc,mul_right_inv,one_mul] at this, from this } end lemma smul_succ {G α : Type*} (n : ℕ) [group G] [mul_action G α] {g : G} {x : α} : g ^ n.succ • x = g • g ^ n • x := begin have := tactic.ring.pow_add_rev g 1 n, rw [pow_one, ← nat.succ_eq_one_add] at this, rw [← this, smul_smul] end section group_action_tactic namespace tactic.interactive setup_tactic_parser open tactic setup_tactic_parser open tactic.simp_arg_type interactive tactic.group /-- Auxiliary tactic for the `group_action` tactic. Calls the simplifier only. -/ meta def aux_group_action (locat : loc) : tactic unit := tactic.interactive.simp_core { fail_if_unchanged := ff } skip tt [ expr ``(smul_smul'), expr ``(smul_eq_smul), expr ``(smul_succ), expr ``(one_smul), expr ``(commutator_element_def), expr ``(mul_one), expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self), expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self), expr ``(int.coe_nat_add), expr ``(int.coe_nat_mul), expr ``(int.coe_nat_zero), expr ``(int.coe_nat_one), expr ``(int.coe_nat_bit0), expr ``(int.coe_nat_bit1), expr ``(int.mul_neg_eq_neg_mul_symm), expr ``(int.neg_mul_eq_neg_mul_symm), symm_expr ``(zpow_coe_nat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul), symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add), expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc), expr ``(zpow_trick), expr ``(zpow_trick_one), expr ``(zpow_trick_one'), expr ``(zpow_trick_sub), expr ``(mul_one), expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self), expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self), expr ``(int.coe_nat_add), expr ``(int.coe_nat_mul), expr ``(int.coe_nat_zero), expr ``(int.coe_nat_one), expr ``(int.coe_nat_bit0), expr ``(int.coe_nat_bit1), expr ``(int.mul_neg_eq_neg_mul_symm), expr ``(int.neg_mul_eq_neg_mul_symm), symm_expr ``(zpow_coe_nat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul), symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add), expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc), expr ``(zpow_trick), expr ``(zpow_trick_one), expr ``(zpow_trick_one'), expr ``(zpow_trick_sub), expr ``(tactic.ring.horner)] [] locat >> skip /-- Tactic for normalizing expressions in group actions, without assuming commutativity, using only the group axioms without any information about which group is manipulated. Example: ```lean example {G α : Type} [group G] [mul_action G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x := begin group_action at h, -- normalizes `h` which becomes `h : c = d` rw ← h, -- the goal is now `a*d*d⁻¹ = a` group_action -- which then normalized and closed end ``` -/ meta def group_action (locat : parse location) : tactic unit := do aux_group_action locat, repeat (aux_group₂ locat ; aux_group_action locat) end tactic.interactive add_tactic_doc { name := "group_action", category := doc_category.tactic, decl_names := [`tactic.interactive.group_action], tags := ["decision procedure", "simplification"] } end group_action_tactic example (G α : Type*) [group G] (a b c : G) [mul_action G α] (x : α) : ⁅a*b,c⁆ • x = (a*⁅b,c⁆*a⁻¹*⁅a,c⁆) • x := begin group_action, end lemma equiv.congr_ne {ι ι' : Type*} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y := begin intro x_ne_y, by_contra h, apply x_ne_y, convert congr_arg e.symm h; simp only [equiv.symm_apply_apply] end -- this definitely should be added to mathlib! @[simp, to_additive] lemma subgroup.mk_smul {G α : Type*} [group G] [mul_action G α] {S : subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a := rfl ---------------------------------------------------------------- section rubin variables {G α β : Type*} [group G] ---------------------------------------------------------------- section groups lemma bracket_mul {f g : G} : ⁅f,g⁆ = f*g*f⁻¹*g⁻¹ := by tauto def is_algebraically_disjoint (f g : G) := ∀h : G, ¬commute f h → ∃f₁ f₂ : G, commute f₁ g ∧ commute f₂ g ∧ commute ⁅f₁,⁅f₂,h⁆⁆ g ∧ ⁅f₁,⁅f₂,h⁆⁆≠1 end groups ---------------------------------------------------------------- section actions variable [mul_action G α] @[simp] lemma orbit_bot (G : Type*) [group G] [mul_action G α] (p : α) : mul_action.orbit (⊥ : subgroup G) p = {p} := begin ext1, rw mul_action.mem_orbit_iff, split, { rintro ⟨⟨_,g_bot⟩,g_to_x⟩, rw [← g_to_x,set.mem_singleton_iff,subgroup.mk_smul], exact (subgroup.mem_bot.mp g_bot).symm ▸ (one_smul _ _) }, exact λ h, ⟨1,eq.trans (one_smul _ p) (set.mem_singleton_iff.mp h).symm⟩ end -------------------------------- section smul'' lemma smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y := congr_arg ((•) g) h lemma smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x := ⟨λ h, (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x),λ h, (smul_congr g h).symm.trans (smul_inv_smul g x)⟩ lemma smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) : g • x = x → g^n • x = x := begin induction n, simp only [pow_zero, one_smul, eq_self_iff_true, implies_true_iff], { intro h, nth_rewrite 1 ← (smul_congr g (n_ih h)).trans h, rw [← mul_smul,← pow_succ] } end lemma smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) : g • x = x → g^n • x = x := begin intro h, cases n, { let := smul_pow_eq_of_smul_eq n h, finish }, { let := smul_eq_iff_inv_smul_eq.mp (smul_pow_eq_of_smul_eq (1+n) h), finish } end def is_equivariant (G : Type*) {β : Type*} [group G] [mul_action G α] [mul_action G β] (f : α → β) := ∀g : G, ∀x : α, f (g • x) = g • (f x) def subset_img' (g : G) (U : set α) := { x | g⁻¹ • x ∈ U } def subset_preimg' (g : G) (U : set α) := { x | g • x ∈ U } def subset_img (g : G) (U : set α) := (•) g '' U infix `•''`:60 := subset_img lemma subset_img_def {g : G} {U : set α} : g •'' U = ((•) g) '' U := rfl lemma mem_smul'' {x : α} {g : G} {U : set α} : x ∈ g •'' U ↔ g⁻¹ • x ∈ U := begin rw [subset_img_def,set.mem_image ((•) g) U x], split, { rintro ⟨y,yU,gyx⟩, let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ smul_congr g⁻¹ gyx, exact ygx ▸ yU }, { intro h, use ⟨g⁻¹ • x,set.mem_preimage.mp h,smul_inv_smul g x⟩, } end lemma mem_inv_smul'' {x : α} {g : G} {U : set α} : x ∈ g⁻¹ •'' U ↔ g • x ∈ U := begin let msi := @mem_smul'' _ _ _ _ x g⁻¹ U, rw inv_inv at msi, exact msi end lemma mul_smul'' (g h : G) (U : set α) : (g*h) •'' U = (g •'' (h •'' U)) := begin ext, rw [mem_smul'',mem_smul'',mem_smul'',← mul_smul,mul_inv_rev] end @[simp] lemma smul''_smul'' {g h : G} {U : set α} : (g •'' (h •'' U)) = (g*h) •'' U := (mul_smul'' g h U).symm @[simp] lemma one_smul'' (U : set α) : (1:G) •'' U = U := begin ext, rw [mem_smul'',inv_one,one_smul] end lemma disjoint_smul'' (g : G) {U V : set α} : disjoint U V → disjoint (g •'' U) (g •'' V) := begin intro disjoint_U_V, rw set.disjoint_left, rw set.disjoint_left at disjoint_U_V, intros x x_in_gU, by_contra h, exact (disjoint_U_V (mem_smul''.mp x_in_gU)) (mem_smul''.mp h) end -- TODO: check if this is actually needed lemma smul''_congr (g : G) {U V : set α} : U = V → g •'' U = g •'' V := congr_arg (λ(W : set α), g •'' W) lemma smul''_subset (g : G) {U V : set α} : U ⊆ V → g •'' U ⊆ g •'' V := begin intros h1 x, rw [mem_smul'',mem_smul''], exact λ h2, h1 h2 end lemma smul''_union (g : G) {U V : set α} : g •'' (U ∪ V) = (g •'' U) ∪ (g •'' V) := begin ext, rw [mem_smul'',set.mem_union,set.mem_union,mem_smul'',mem_smul''], end lemma smul''_inter (g : G) {U V : set α} : g •'' (U ∩ V) = (g •'' U) ∩ (g •'' V) := begin ext, rw [set.mem_inter_iff,mem_smul'',mem_smul'',mem_smul'',set.mem_inter_iff] end lemma smul''_eq_inv_preimage {g : G} {U : set α} : g •'' U = (•) g⁻¹ ⁻¹' U := begin ext, split, { intro h, rw [set.mem_preimage], exact mem_smul''.mp h }, { intro h, rw mem_smul'', exact set.mem_preimage.mp h } end lemma smul''_eq_of_smul_eq {g h : G} {U : set α} : (∀x ∈ U, g • x = h • x) → g •'' U = h •'' U := begin intros hU, ext, rw [mem_smul'',mem_smul''], split, { intro k, let a := congr_arg ((•) h⁻¹) (hU (g⁻¹ • x) k), simp only [smul_inv_smul,inv_smul_smul] at a, exact set.mem_of_eq_of_mem a k }, { intro k, let a := congr_arg ((•) g⁻¹) (hU (h⁻¹ • x) k), simp only [smul_inv_smul,inv_smul_smul] at a, exact set.mem_of_eq_of_mem a.symm k } end end smul'' -------------------------------- section support def support (α : Type*) [mul_action G α] (g : G) := { x : α | g • x ≠ x } lemma support_eq_not_fixed_by {g : G} : support α g = (mul_action.fixed_by G α g)ᶜ := by tauto lemma mem_support {x : α} {g : G} : x ∈ support α g ↔ g • x ≠ x := by tauto lemma mem_not_support {x : α} {g : G} : x ∉ support α g ↔ g • x = x := by rw [mem_support,not_not] lemma smul_in_support {g : G} {x : α} : x ∈ support α g → g • x ∈ support α g := λ h, h ∘ (smul_left_cancel g) lemma inv_smul_in_support {g : G} {x : α} : x ∈ support α g → g⁻¹ • x ∈ support α g := λ h k, h (smul_inv_smul g x ▸ smul_congr g k) lemma fixed_of_disjoint {g : G} {x : α} {U : set α} : x ∈ U → disjoint U (support α g) → g • x = x := λ x_in_U disjoint_U_support, mem_not_support.mp (set.disjoint_left.mp disjoint_U_support x_in_U) lemma fixes_subset_within_support (g : G) {U : set α} : support α g ⊆ U → g •'' U = U := begin intros support_in_U, ext x, cases @or_not (x ∈ support α g) with xmoved xfixed, exact ⟨λ _, support_in_U xmoved, λ _, mem_smul''.mpr (support_in_U (inv_smul_in_support xmoved))⟩, rw [mem_smul'',smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp xfixed)] end lemma moves_subset_within_support (g : G) (U V : set α) : U ⊆ V → support α g ⊆ V → g •'' U ⊆ V := λ U_in_V support_in_V, fixes_subset_within_support g support_in_V ▸ smul''_subset g U_in_V lemma support_mul (g h : G) (α : Type*) [mul_action G α] : support α (g*h) ⊆ support α g ∪ support α h := begin intros x x_in_support, by_contra h_support, let := not_or_distrib.mp h_support, from x_in_support ((mul_smul g h x).trans ((congr_arg ((•) g) (mem_not_support.mp this.2)).trans $ mem_not_support.mp this.1)), end lemma support_conjugate (α : Type*) [mul_action G α] (g h : G) : support α (h*g*h⁻¹) = h •'' (support α g) := begin ext, rw [mem_support,mem_smul'',mem_support,mul_smul,mul_smul], split, { intro h1, by_contra h2, exact h1 ((congr_arg ((•) h) h2).trans (smul_inv_smul _ _)) }, { intro h1, by_contra h2, exact h1 ((inv_smul_smul h (g • h⁻¹ • x)) ▸ (congr_arg ((•) h⁻¹) h2)) } end lemma support_inv (α : Type*) [mul_action G α] (g : G) : support α g⁻¹ = support α g := begin ext, rw [mem_support,mem_support], split, { intro h1, by_contra h2, exact h1 (smul_eq_iff_inv_smul_eq.mp h2) }, { intro h1, by_contra h2, exact h1 (smul_eq_iff_inv_smul_eq.mpr h2) } end lemma support_pow (α : Type*) [mul_action G α] (g : G) (j : ℕ) : support α (g^j) ⊆ support α g := begin intros x xmoved, by_contra xfixed, rw mem_support at xmoved, induction j, { apply xmoved, rw [pow_zero g,one_smul] }, { apply xmoved, let j_ih := (congr_arg ((•) g) (not_not.mp j_ih)).trans (mem_not_support.mp xfixed), rw [← mul_smul,← pow_succ] at j_ih, exact j_ih } end lemma support_comm (α : Type*) [mul_action G α] (g h : G) : support α ⁅g,h⁆ ⊆ support α h ∪ (g •'' (support α h)) := begin intros x x_in_support, by_contra all_fixed, rw set.mem_union at all_fixed, cases @or_not (h • x = x) with xfixed xmoved, { rw [mem_support,bracket_mul,mul_smul,smul_eq_iff_inv_smul_eq.mp xfixed,← mem_support] at x_in_support, exact ((support_conjugate α h g).symm ▸ (not_or_distrib.mp all_fixed).2) x_in_support }, { exact all_fixed (or.inl xmoved) }, end lemma disjoint_support_comm (f g : G) {U : set α} : support α f ⊆ U → disjoint U (g •'' U) → ∀x ∈ U, ⁅f,g⁆ • x = f • x := begin intros support_in_U disjoint_U x x_in_U, have support_conj : support α (g*f⁻¹*g⁻¹) ⊆ g •'' U := ((support_conjugate α f⁻¹ g).trans (smul''_congr g (support_inv α f))).symm ▸ (smul''_subset g support_in_U), have goal := (congr_arg ((•) f) (fixed_of_disjoint x_in_U (set.disjoint_of_subset_right support_conj disjoint_U))).symm, rw [← mul_smul,← mul_assoc,← mul_assoc] at goal, exact goal.symm, end end support -- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup def rigid_stabilizer' (G : Type*) [group G] [mul_action G α] (U : set α) : set G := {g : G | ∀x : α, g • x = x ∨ x ∈ U} def rigid_stabilizer (G : Type*) [group G] [mul_action G α] (U : set α) : subgroup G := { carrier := {g : G | ∀x ∉ U, g • x = x}, mul_mem' := λ a b ha hb x x_notin_U, by rw [mul_smul a b x,hb x x_notin_U,ha x x_notin_U], inv_mem' := λ _ hg x x_notin_U, smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U), one_mem' := λ x _, one_smul G x } lemma rist_supported_in_set {g : G} {U : set α} : g ∈ rigid_stabilizer G U → support α g ⊆ U := λ h x x_in_support, by_contradiction (x_in_support ∘ (h x)) lemma rist_ss_rist {U V : set α} (V_ss_U : V ⊆ U) : (rigid_stabilizer G V : set G) ⊆ (rigid_stabilizer G U : set G) := begin intros g g_in_ristV x x_notin_U, have x_notin_V : x ∉ V, { intro x_in_V, exact x_notin_U (V_ss_U x_in_V) }, exact g_in_ristV x x_notin_V end end actions ---------------------------------------------------------------- section topological_actions variables [topological_space α] [topological_space β] class continuous_mul_action (G α : Type*) [group G] [topological_space α] extends mul_action G α := (continuous : ∀g : G, continuous (@has_smul.smul G α _ g)) structure equivariant_homeomorph (G α β : Type*) [group G] [topological_space α] [topological_space β] [mul_action G α] [mul_action G β] extends homeomorph α β := (equivariant : is_equivariant G to_fun) lemma equivariant_fun [mul_action G α] [mul_action G β] (h : equivariant_homeomorph G α β) : is_equivariant G h.to_fun := h.equivariant lemma equivariant_inv [mul_action G α] [mul_action G β] (h : equivariant_homeomorph G α β) : is_equivariant G h.inv_fun := begin intros g x, let e := congr_arg h.inv_fun (h.equivariant g (h.inv_fun x)), rw [h.left_inv _,h.right_inv _] at e, exact e.symm, end variables [continuous_mul_action G α] lemma img_open_open (g : G) (U : set α) (h : is_open U) [continuous_mul_action G α] : is_open (g •'' U) := begin rw smul''_eq_inv_preimage, exact continuous.is_open_preimage (continuous_mul_action.continuous g⁻¹) U h end lemma support_open (g : G) [topological_space α] [t2_space α] [continuous_mul_action G α] : is_open (support α g) := begin apply is_open_iff_forall_mem_open.mpr, intros x xmoved, rcases t2_space.t2 (g • x) x xmoved with ⟨U,V,open_U,open_V,gx_in_U,x_in_V,disjoint_U_V⟩, exact ⟨V ∩ (g⁻¹ •'' U), λ y yW, @disjoint.ne_of_mem α U V disjoint_U_V (g•y) y (mem_inv_smul''.mp (set.mem_of_mem_inter_right yW)) (set.mem_of_mem_inter_left yW), is_open.inter open_V (img_open_open g⁻¹ U open_U), ⟨x_in_V,mem_inv_smul''.mpr gx_in_U⟩⟩ end end topological_actions ---------------------------------------------------------------- section faithful_actions variables [mul_action G α] [has_faithful_smul G α] lemma faithful_moves_point {g : G} (h2 : ∀x : α, g • x = x) : g = 1 := begin have h3 : ∀x : α, g • x = (1:G) • x := λ x, (h2 x).symm ▸ (one_smul G x).symm, exact eq_of_smul_eq_smul h3, end lemma faithful_moves_point' {g : G} (α : Type*) [mul_action G α] [has_faithful_smul G α] : g ≠ 1 → ∃x : α, g • x ≠ x := λ k, by_contradiction (λ h, k $ faithful_moves_point $ not_exists_not.mp h) lemma faithful_rist_moves_point {g : G} {U : set α} : g ∈ rigid_stabilizer G U → g ≠ 1 → ∃x ∈ U, g • x ≠ x := begin intros g_rigid g_ne_one, rcases faithful_moves_point' α g_ne_one with ⟨x,xmoved⟩, exact ⟨x,rist_supported_in_set g_rigid xmoved,xmoved⟩ end lemma ne_one_support_nempty {g : G} : g ≠ 1 → (support α g).nonempty := begin intro h1, cases (faithful_moves_point' α h1) with x _, use x end -- FIXME: somehow clashes with another definition lemma disjoint_commute {f g : G} : disjoint (support α f) (support α g) → commute f g := begin intro hdisjoint, rw ← commutator_element_eq_one_iff_commute, apply (@faithful_moves_point _ α), intro x, rw [bracket_mul,mul_smul,mul_smul,mul_smul], cases @or_not (x ∈ support α f) with hfmoved hffixed, { rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp (set.disjoint_left.mp hdisjoint hfmoved)), mem_not_support.mp (set.disjoint_left.mp hdisjoint (inv_smul_in_support hfmoved)),smul_inv_smul] }, cases @or_not (x ∈ support α g) with hgmoved hgfixed, { rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp $ set.disjoint_right.mp hdisjoint (inv_smul_in_support hgmoved)), smul_inv_smul,mem_not_support.mp hffixed] }, { rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hgfixed),smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hffixed), mem_not_support.mp hgfixed,mem_not_support.mp hffixed] } end end faithful_actions ---------------------------------------------------------------- section rubin_actions variables [topological_space α] [topological_space β] def has_no_isolated_points (α : Type*) [topological_space α] := ∀x : α, (nhds_within x {x}ᶜ).ne_bot def is_locally_dense (G α : Type*) [group G] [topological_space α] [mul_action G α] := ∀U : set α, ∀p ∈ U, p ∈ interior (closure (mul_action.orbit (rigid_stabilizer G U) p)) structure rubin_action (G α : Type*) extends group G, topological_space α, mul_action G α, has_faithful_smul G α := (locally_compact : locally_compact_space α) (hausdorff : t2_space α) (no_isolated_points : has_no_isolated_points α) (locally_dense : is_locally_dense G α) end rubin_actions ---------------------------------------------------------------- section period variables [mul_action G α] noncomputable def period (p : α) (g : G) : ℕ := Inf { n : ℕ | n > 0 ∧ g ^ n • p = p } lemma period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) : 0 < period p g ∧ period p g ≤ m := begin split, { by_contra h', have period_zero : period p g = 0, linarith, rcases (nat.Inf_eq_zero.1 period_zero) with ⟨ cont, h_1 ⟩, linarith, exact set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨ m_pos, gmp_eq_p ⟩ }, exact nat.Inf_le ⟨ m_pos, gmp_eq_p ⟩ end lemma notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0) (period_pos : period p g > 0) (pmoves : ∀ (i : ℕ), 0 < i → i < n → g ^ i • p ≠ p) : n ≤ period p g := begin by_contra period_le, exact (pmoves (period p g) period_pos (not_le.mp period_le)) (nat.Inf_mem (nat.nonempty_of_pos_Inf period_pos)).2 end lemma notfix_le_period' {p : α} {g : G} {n : ℕ} (n_pos : n > 0) (period_pos : period p g > 0) (pmoves : ∀ (i : fin n), 0 < (i : ℕ) → g ^ (i : ℕ) • p ≠ p) : n ≤ period p g := notfix_le_period n_pos period_pos (λ (i : ℕ) (i_pos : 0 < i) (i_lt_n : i < n), pmoves (⟨ i, i_lt_n ⟩ : fin n) i_pos ) lemma period_neutral_eq_one (p : α) : period p (1 : G) = 1 := begin have : 0 < period p (1 : G) ∧ period p (1 : G) ≤ 1, { exact period_le_fix (by norm_num : 1 > 0) (by group_action : (1 : G) ^ 1 • p = p) }, linarith end def periods (U : set α) (H : subgroup G) : set ℕ := { n : ℕ | ∃ (p : U) (g : H), period (p : α) (g : G) = n } -- TODO: split into multiple lemmas lemma period_lemma {U : set α} (U_nonempty : U.nonempty) {H : subgroup G} (exp_ne_zero : monoid.exponent H ≠ 0) : (periods U H).nonempty ∧ bdd_above (periods U H) ∧ ∃ (m : ℕ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p := begin rcases (monoid.exponent_exists_iff_ne_zero.2 exp_ne_zero) with ⟨ m, m_pos, gm_eq_one ⟩, have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p, { intros p g, rw gm_eq_one g, group_action }, have periods_nonempty : (periods U H).nonempty, { use 1, let p := U_nonempty.some, use p, exact set.nonempty.some_mem U_nonempty, use 1, exact period_neutral_eq_one p }, have periods_bounded : bdd_above (periods U H), { use m, intros some_period hperiod, rcases hperiod with ⟨ p, g, hperiod ⟩, rw ← hperiod, exact (period_le_fix m_pos (gmp_eq_p p g)).2 }, exact ⟨ periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p ⟩ end lemma period_from_exponent (U : set α) (U_nonempty : U.nonempty) {H : subgroup G} (exp_ne_zero : monoid.exponent H ≠ 0) : ∃ (p : U) (g : H) (n : ℕ), n > 0 ∧ period (p : α) (g : G) = n ∧ n = Sup (periods U H) := begin rcases period_lemma U_nonempty exp_ne_zero with ⟨ periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p ⟩, rcases nat.Sup_mem periods_nonempty periods_bounded with ⟨ p, g, hperiod ⟩, exact ⟨ p, g, Sup (periods U H), hperiod ▸ (period_le_fix m_pos (gmp_eq_p p g)).1, hperiod, rfl ⟩ end lemma zero_lt_period_le_Sup_periods {U : set α} (U_nonempty : U.nonempty) {H : subgroup G} (exp_ne_zero : monoid.exponent H ≠ 0) : ∀ (p : U) (g : H), (0 < period (p : α) (g : G)) ∧ (period (p : α) (g : G) ≤ Sup (periods U H)) := begin rcases period_lemma U_nonempty exp_ne_zero with ⟨ periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p ⟩, intros p g, have period_in_periods : period (p : α) (g : G) ∈ periods U H, { use p, use g }, exact ⟨ (period_le_fix m_pos (gmp_eq_p p g)).1, le_cSup periods_bounded period_in_periods ⟩, end lemma pow_period_fix (p : α) (g : G) : g ^ (period p g) • p = p := begin cases eq_zero_or_ne_zero (period p g), { rw h, finish }, { exact (nat.Inf_mem (nat.nonempty_of_pos_Inf (nat.pos_of_ne_zero (@ne_zero.ne _ _ (period p g) h)))).2 } end end period ---------------------------------------------------------------- section algebraic_disjointness variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] def is_locally_moving (G α : Type*) [group G] [topological_space α] [mul_action G α] := ∀U : set α, is_open U → set.nonempty U → rigid_stabilizer G U ≠ ⊥ -- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin -- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU, -- by_contra, -- have some_in_U := ildGα U neU.some neU.some_mem, -- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U, -- tauto -- end -- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin -- intro xmoved, -- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩, -- let U := (g⁻¹ •'' V) ∩ W, -- use U, -- split, -- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W, -- split, -- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩, -- exact set.disjoint_of_subset -- (set.inter_subset_right (g⁻¹•''V) W) -- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (set.mem_of_mem_inter_left (mem_smul''.mp hy)) : g•''U ⊆ V) -- disjoint_V_W.symm -- end -- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin -- intros open_V x_in_V xmoved, -- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩, -- let U := W ∩ V, -- use U, -- split, -- exact is_open.inter open_W open_V, -- split, -- exact ⟨x_in_W,x_in_V⟩, -- split, -- exact set.inter_subset_right W V, -- exact set.disjoint_of_subset -- (set.inter_subset_left W V) -- ((@smul''_inter _ _ _ _ g W V).symm ▸ set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W) -- disjoint_W -- end -- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : (⋃(i : fin 2 × fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) := begin -- ext, -- simp only [set.mem_Union, set.mem_union], -- split, -- { simp only [forall_exists_index], -- intro i, -- fin_cases i; simp {contextual := tt}, }, -- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, }, -- end -- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin -- intros disjoint_f_g h hfh, -- let support_f := support α f, -- -- h is not the identity on support α f -- cases set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx, -- let x_in_support_f := hx.1, -- let hx_ne_x := mem_support.mp hx.2, -- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V -- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩, -- let ristV_ne_bot := locally_moving V open_V (set.nonempty_of_mem x_in_V), -- -- let f₂ be a nontrivial element of rigid_stabilizer G V -- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩, -- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W -- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩, -- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved), -- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩, -- -- let f₁ be a nontrivial element of rigid_stabilizer G W -- let ristW_ne_bot := locally_moving W open_W (set.nonempty_of_mem y_in_W), -- rcases (or_iff_right ristW_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩, -- use f₁, use f₂, -- -- note that f₁,f₂ commute with g since their support is in support α f -- split, -- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g), -- split, -- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g), -- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g -- let k := ⁅f₂,h⁆, -- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V -- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W, -- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm, -- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g. -- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin -- let := (support_comm α k f₁).trans (set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)), -- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this, -- exact (this.trans $ (set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support -- end, -- split, -- exact disjoint_commute (set.disjoint_of_subset_left h3 disjoint_f_g), -- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity. -- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z := -- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W), -- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩, -- by_contra h5, -- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)), -- end -- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U := -- (mul_smul'' g h U).symm -- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin -- intro f_injective, -- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin -- by_contra, -- let := smul_congr (f j) h, -- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this, -- from i_ne_j (f_injective this), -- end in disjoint_nbhd x_moved, -- let ι2 := { p : ι×ι // p.1 ≠ p.2 }, -- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some, -- use U, -- split, -- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1), -- split, -- exact set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1), -- intros i j i_ne_j, -- let U_inc := set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩, -- let := (disjoint_smul'' (f j) (set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm, -- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this, -- from this -- end -- lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℤ) • x) := begin -- intros i j same_img, -- by_contra i_ne_j, -- let same_img' := congr_arg ((•) (g ^ (-(j : ℤ)))) same_img, -- simp only [inv_smul_smul] at same_img', -- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img', -- simp only [add_left_neg, zpow_zero, one_smul] at same_img', -- let ij := |(i:ℤ) - (j:ℤ)|, -- rw ← sub_eq_add_neg at same_img', -- have xfixed : g^ij • x = x := begin -- cases abs_cases ((i:ℤ) - (j:ℤ)), -- { rw ← h.1 at same_img', exact same_img' }, -- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' } -- end, -- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)), -- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)), -- rw zero_sub at neg_le, -- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j), -- rw sub_zero at le_pos, -- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩, -- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed, -- end -- lemma int_to_nat (k : ℤ) (k_pos : k ≥ 1) : k = k.nat_abs := begin -- cases (int.nat_abs_eq k), -- { exact h }, -- { have : -(k.nat_abs : ℤ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg, -- rw ← h at this, by_contra, linarith } -- end -- lemma moves_inj_N {g : G} {x : α} {n : ℕ} (period_ge_n' : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℕ) • x) := begin -- have period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x, -- { intros k one_le_k k_lt_n, -- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)), -- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)), -- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n, -- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this, -- exact this }, -- have := moves_inj period_ge_n, -- finish -- end -- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:ℤ) • x) := begin -- apply moves_inj, -- intros k k_ge_1 k_lt_5, -- by_contra xfixed, -- have k_div_12 : k * (12 / k) = 12 := begin -- interval_cases using k_ge_1 k_lt_5; norm_num -- end, -- have veryfixed : g^12 • x = x := begin -- let := smul_zpow_eq_of_smul_eq (12/k) xfixed, -- rw [← zpow_mul,k_div_12] at this, -- norm_cast at this -- end, -- exact xmoves veryfixed -- end -- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin -- intros locally_moving alg_disjoint, -- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty -- by_contra not_disjoint, -- let U := support α f ∩ support α (g^12), -- have U_nonempty : U.nonempty := set.not_disjoint_iff_nonempty_inter.mp not_disjoint, -- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint -- let x := U_nonempty.some, -- have five_points : function.injective (λi : fin 5, g^(i:ℤ) • x) := moves_1234_of_moves_12 (mem_support.mp $ (set.inter_subset_right _ _) U_nonempty.some_mem), -- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩, -- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩, -- simp only at disjoint_img_V₁, -- let V := V₀ ∩ V₁, -- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V -- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩), -- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- have comm_non_trivial : ¬commute f h := begin -- by_contra comm_trivial, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩, -- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (set.disjoint_of_subset (set.inter_subset_left V₀ V₁) (smul''_subset f (set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V, -- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm, -- exact z_moved act_comm.symm, -- end, -- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g) -- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩, -- let h' := ⁅f₁,⁅f₂,h⁆⁆, -- -- now observe that supp([f₂, h]) ⊆ V ∪ f₂(V), and by the same reasoning supp(h')⊆V∪f₁(V)∪f₂(V)∪f₁f₂(V) -- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := (support_comm α f₂ h).trans (set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV), -- have support_h' : support α h' ⊆ ⋃(i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin -- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)), -- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this, -- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V), -- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u, -- exact rw_u.symm ▸ this, -- end, -- -- since h' is nontrivial, it has at least one point p in its support -- cases faithful_moves_point' α h'_non_trivial with p p_moves, -- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h') -- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin -- intro i, -- rw mem_support, -- by_contra p_fixed, -- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed, -- exact p_moves p_fixed, -- end, -- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂} -- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial, -- let choice := λi : fin 5, (set.mem_Union.mp $ support_h' $ gi_in_support i).some, -- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩, -- clear h_1_w h_1_h_h_w pigeonhole, -- let k := f₁^(choice i).1.val*f₂^(choice i).2.val, -- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice, -- rw ← same_choice }, -- have g_i : g^i.val • p ∈ k •'' V := (set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec, -- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec, -- -- but since g^(j−i)(V) is disjoint from V and k commutes with g, we know that g^(j−i)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V). -- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin -- let := (disjoint_smul'' (g^(-(i.val+j.val : ℤ))) (disjoint_img_V₁ i j i_ne_j)).symm, -- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this, -- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this, -- from set.disjoint_of_subset (smul''_subset _ (set.inter_subset_right V₀ V₁)) (smul''_subset _ (set.inter_subset_right V₀ V₁)) this -- end, -- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val), -- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin -- let this := disjoint_smul'' k g_disjoint, -- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val, -- ← (k_commutes.symm.inv_left.pow_left i.val).eq, -- ← (k_commutes.symm.inv_left.pow_left j.val).eq, -- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this, -- from this -- end, -- exact set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j) -- end -- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin -- intro alg_disjoint, -- by_contra non_commute, -- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩, -- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d, -- tauto -- end -- section remark_1_3 -- def G := equiv.perm (fin 2) -- def σ := equiv.swap (0 : fin 2) (1 : fin 2) -- example : is_algebraically_disjoint σ σ := begin -- intro h, -- fin_cases h, -- intro hyp1, -- exfalso, -- swap, intro hyp2, exfalso, -- -- is commute decidable? cc, -- sorry -- dec_trivial -- sorry -- second sorry needed -- end -- end remark_1_3 end algebraic_disjointness ---------------------------------------------------------------- section regular_support variables [topological_space α] [continuous_mul_action G α] def interior_closure (U : set α) := interior (closure U) lemma is_open_interior_closure (U : set α) : is_open (interior_closure U) := is_open_interior lemma interior_closure_mono {U V : set α} : U ⊆ V → interior_closure U ⊆ interior_closure V := interior_mono ∘ closure_mono def set.is_regular_open (U : set α) := interior_closure U = U lemma set.is_regular_def (U : set α) : U.is_regular_open ↔ interior_closure U = U := by refl lemma is_open.in_closure {U : set α} : is_open U → U ⊆ interior (closure U) := begin intros U_open x x_in_U, apply interior_mono subset_closure, rw U_open.interior_eq, exact x_in_U end lemma is_open.interior_closure_subset {U : set α} : is_open U → U ⊆ interior_closure U := λ h, (subset_interior_iff_is_open.mpr h).trans (interior_mono subset_closure) lemma regular_interior_closure (U : set α) : (interior_closure U).is_regular_open := begin rw set.is_regular_def, apply set.subset.antisymm, exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure)), exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure) end def regular_support (α : Type*) [topological_space α] [mul_action G α] (g : G) := interior_closure (support α g) lemma regular_regular_support {g : G} : (regular_support α g).is_regular_open := regular_interior_closure _ lemma support_in_regular_support [t2_space α] (g : G) : support α g ⊆ regular_support α g := is_open.interior_closure_subset (support_open g) lemma mem_regular_support (g : G) (U : set α) : U.is_regular_open → g ∈ rigid_stabilizer G U → regular_support α g ⊆ U := λ U_ro g_moves, (set.is_regular_def _).mp U_ro ▸ (interior_closure_mono (rist_supported_in_set g_moves)) -- FIXME: Weird naming? def algebraic_centralizer (f : G) : set G := { h | ∃g, h = g^12 ∧ is_algebraically_disjoint f g } end regular_support -- ---------------------------------------------------------------- -- section finite_exponent -- lemma coe_nat_fin {n i : ℕ} (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩ -- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] -- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : ℕ} -- (n_pos : 0 < n) -- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V)) : -- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := -- begin -- intros q hq i i_pos hcontra, -- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, finish }, -- have hcontra' : g ^ (i : ℕ) • (q : α) ∈ g ^ (i : ℕ) •'' V, exact ⟨ q, hq, rfl ⟩, -- have giq_notin_V := set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra', -- exact ((by finish : g ^ 0•''V = V) ▸ giq_notin_V) hcontra -- end -- lemma moves_inj_period {g : G} {p : α} {n : ℕ} (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ℕ) • p) := begin -- have period_ge_n : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • p ≠ p, -- { intros k one_le_k k_lt_n gkp_eq_p, -- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p, -- rw period_eq_n at this, -- linarith }, -- exact moves_inj_N period_ge_n -- end -- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α] -- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) : -- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 := -- begin -- intro U_nonempty, -- by_contra exp_ne_zero, -- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩, -- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩, -- dsimp at disj', -- let V := U ∩ V', -- have V_ss_U : V ⊆ U := set.inter_subset_left U V', -- have V'_ss_V : V ⊆ V' := set.inter_subset_right U V', -- have V_open : is_open V := is_open.inter U_open V'_open, -- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩, -- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V), -- { intros i j i_ne_j W W_ss_giV W_ss_gjV, -- exact disj' i j i_ne_j -- (set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V)) -- (set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) }, -- have ristV_ne_bot := locally_moving V V_open (set.nonempty_of_mem p_in_V), -- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩, -- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g), -- have giq_notin_V : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V, -- have giq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ≠ (q : α), -- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, }, -- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 }, -- -- We have (hg)^i q = g^i q for all 0 < i < n -- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ℕ) < n → (h * g) ^ (i : ℕ) • q = (g : G) ^ (i : ℕ) • q, -- { intros i, induction (i : ℕ) with i', -- { intro, repeat {rw pow_zero} }, -- { intro succ_i'_lt_n, -- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ], -- have image_q_notin_V : g ^ i'.succ • q ∉ V, -- { have i'succ_ne_zero := ne_zero.pos i'.succ, -- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero }, -- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } }, -- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n -- have hgiq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → (h * g) ^ (i : ℕ) • q ≠ q, -- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) }, -- -- This even holds for i = n -- have hgnq_ne_q : (h * g) ^ n • q ≠ q, -- { -- Rewrite (hg)^n q = hg^n q -- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred), -- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩, -- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n), -- have : n = (i' : ℕ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm, -- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this], -- -- Now it follows from g^n q = q and h q ≠ q -- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q, -- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n, -- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) }, -- -- Finally, we derive a contradiction -- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U), -- rw ← n_eq_Sup at period_pos_le_n, -- cases (lt_or_eq_of_le period_pos_le_n.2), -- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) }, -- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) } -- end -- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry -- end finite_exponent -- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β] -- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry end rubin