/- Copyright (c) 2023 Laurent Bartholdi. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Laurent Bartholdi -/ import Mathlib.Data.Finset.Basic import Mathlib.Data.Finset.Card import Mathlib.Data.Fintype.Perm import Mathlib.GroupTheory.Subgroup.Basic import Mathlib.GroupTheory.Commutator import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Exponent import Mathlib.GroupTheory.Perm.Basic import Mathlib.Topology.Basic import Mathlib.Topology.Compactness.Compact import Mathlib.Topology.Separation import Mathlib.Topology.Homeomorph #align_import rubin -- TODO: remove --@[simp] theorem Rubin.GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} : g • h • x = (g * h) • x := smul_smul g h x #align smul_smul' Rubin.GroupActionExt.smul_smul' --@[simp] theorem Rubin.GroupActionExt.smul_eq_smul_inv {G α : Type _} [Group G] [MulAction G α] {g h : G} {x y : α} : g • x = h • y ↔ (h⁻¹ * g) • x = y := by constructor · intro hyp let res := congr_arg ((· • ·) h⁻¹) hyp simp at res rw [← mul_smul] at res exact res · intro hyp rw [<-hyp, mul_smul] simp #align smul_eq_smul Rubin.GroupActionExt.smul_eq_smul_inv theorem Rubin.GroupActionExt.smul_succ {G α : Type _} (n : ℕ) [Group G] [MulAction G α] {g : G} {x : α} : g ^ n.succ • x = g • g ^ n • x := by rw [pow_succ, mul_smul] #align smul_succ Rubin.GroupActionExt.smul_succ section GroupActionTactic -- namespace Tactic.Interactive -- /- ./././Mathport/Syntax/Translate/Tactic/Mathlib/Core.lean:38:34: unsupported: setup_tactic_parser -/ -- open Tactic -- /- ./././Mathport/Syntax/Translate/Tactic/Mathlib/Core.lean:38:34: unsupported: setup_tactic_parser -/ -- open Tactic.SimpArgType Interactive Tactic.Group -- /-- Auxiliary tactic for the `group_action` tactic. Calls the simplifier only. -/ -- unsafe def aux_group_action (locat : Loc) : tactic Unit := -- tactic.interactive.simp_core { failIfUnchanged := false } skip true -- [expr ``(Rubin.GroupActionExt.smul_smul'), expr ``(Rubin.GroupActionExt.smul_eq_smul_inv), -- expr ``(Rubin.GroupActionExt.smul_succ), expr ``(one_smul), expr ``(commutatorElement_def), -- expr ``(mul_one), expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self), -- expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self), -- expr ``(Int.ofNat_add), expr ``(Int.ofNat_mul), expr ``(Int.ofNat_zero), -- expr ``(Int.ofNat_one), expr ``(Int.ofNat_bit0), expr ``(Int.ofNat_bit1), -- expr ``(Int.mul_neg_eq_neg_mul_symm), expr ``(Int.neg_mul_eq_neg_mul_symm), -- symm_expr ``(zpow_ofNat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul), -- symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add), -- expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc), -- expr ``(Mathlib.Tactic.Group.zpow_trick), expr ``(Mathlib.Tactic.Group.zpow_trick_one), -- expr ``(Mathlib.Tactic.Group.zpow_trick_one'), expr ``(zpow_trick_sub), expr ``(mul_one), -- expr ``(one_mul), expr ``(one_pow), expr ``(one_zpow), expr ``(sub_self), -- expr ``(add_neg_self), expr ``(neg_add_self), expr ``(neg_neg), expr ``(tsub_self), -- expr ``(Int.ofNat_add), expr ``(Int.ofNat_mul), expr ``(Int.ofNat_zero), -- expr ``(Int.ofNat_one), expr ``(Int.ofNat_bit0), expr ``(Int.ofNat_bit1), -- expr ``(Int.mul_neg_eq_neg_mul_symm), expr ``(Int.neg_mul_eq_neg_mul_symm), -- symm_expr ``(zpow_ofNat), symm_expr ``(zpow_neg_one), symm_expr ``(zpow_mul), -- symm_expr ``(zpow_add_one), symm_expr ``(zpow_one_add), symm_expr ``(zpow_add), -- expr ``(mul_zpow_neg_one), expr ``(zpow_zero), expr ``(mul_zpow), symm_expr ``(mul_assoc), -- expr ``(Mathlib.Tactic.Group.zpow_trick), expr ``(Mathlib.Tactic.Group.zpow_trick_one), -- expr ``(Mathlib.Tactic.Group.zpow_trick_one'), expr ``(zpow_trick_sub), -- expr ``(Tactic.Ring.horner)] -- [] locat >> -- skip -- #align tactic.interactive.aux_group_action tactic.interactive.aux_group_action -- /-- Tactic for normalizing expressions in group actions, without assuming -- commutativity, using only the group axioms without any information about -- which group is manipulated. -- Example: -- ```lean -- example {G α : Type} [group G] [mul_action G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x := -- begin -- group_action at h, -- normalizes `h` which becomes `h : c = d` -- rw ← h, -- the goal is now `a*d*d⁻¹ = a` -- group_action -- which then normalized and closed -- end -- ``` -- -/ -- unsafe def group_action (locat : parse location) : tactic Unit := do -- aux_group_action locat -- repeat (andthen (aux_group₂ locat) (aux_group_action locat)) -- #align tactic.interactive.group_action tactic.interactive.group_action -- end Tactic.Interactive -- add_tactic_doc -- { Name := "group_action" -- category := DocCategory.tactic -- declNames := [`tactic.interactive.group_action] -- tags := ["decision procedure", "simplification"] } -- end GroupActionTactic /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/ example (G α : Type _) [Group G] (a b c : G) [MulAction G α] (x : α) : ⁅a * b, c⁆ • x = (a * ⁅b, c⁆ * a⁻¹ * ⁅a, c⁆) • x := by sorry trace "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]" theorem Rubin.equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y := by intro x_ne_y by_contra h apply x_ne_y convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply] #align equiv.congr_ne Rubin.equiv_congr_ne -- this definitely should be added to mathlib! @[simp, to_additive] theorem Rubin.GroupActionExt.subgroup_mk_smul {G α : Type _} [Group G] [MulAction G α] {S : Subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a := rfl #align Subgroup.mk_smul Rubin.GroupActionExt.subgroup_mk_smul #align add_subgroup.mk_vadd AddSubgroup.mk_vadd ---------------------------------------------------------------- section Rubin variable {G α β : Type _} [Group G] ---------------------------------------------------------------- section Groups theorem Rubin.bracket_mul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto #align bracket_mul Rubin.bracket_mul def Rubin.is_algebraically_disjoint (f g : G) := ∀ h : G, ¬Commute f h → ∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1 #align is_algebraically_disjoint Rubin.is_algebraically_disjoint end Groups ---------------------------------------------------------------- section Actions variable [MulAction G α] @[simp] theorem Rubin.orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) : MulAction.orbit (⊥ : Subgroup G) p = {p} := by ext1 rw [MulAction.mem_orbit_iff] constructor · rintro ⟨⟨_, g_bot⟩, g_to_x⟩ rw [← g_to_x, Set.mem_singleton_iff, Rubin.GroupActionExt.subgroup_mk_smul] exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _ exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩ #align orbit_bot Rubin.orbit_bot -------------------------------- section SmulImage theorem Rubin.GroupActionExt.smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y := congr_arg ((· • ·) g) h #align smul_congr Rubin.GroupActionExt.smul_congr theorem Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x := ⟨fun h => (Rubin.GroupActionExt.smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h => (Rubin.GroupActionExt.smul_congr g h).symm.trans (smul_inv_smul g x)⟩ #align smul_eq_iff_inv_smul_eq Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq theorem Rubin.GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) : g • x = x → g ^ n • x = x := by induction n with | zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff] | succ n n_ih => intro h nth_rw 2 [← (Rubin.GroupActionExt.smul_congr g (n_ih h)).trans h] rw [← mul_smul, ← pow_succ] #align smul_pow_eq_of_smul_eq Rubin.GroupActionExt.smul_pow_eq_of_smul_eq theorem Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) : g • x = x → g ^ n • x = x := by intro h cases n with | ofNat n => let res := Rubin.GroupActionExt.smul_pow_eq_of_smul_eq n h; simp; exact res | negSucc n => let res := smul_eq_iff_inv_smul_eq.mp (Rubin.GroupActionExt.smul_pow_eq_of_smul_eq (1 + n) h); simp rw [add_comm] exact res #align smul_zpow_eq_of_smul_eq Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq def Rubin.GroupActionExt.is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α] [MulAction G β] (f : α → β) := ∀ g : G, ∀ x : α, f (g • x) = g • f x #align is_equivariant Rubin.GroupActionExt.is_equivariant def Rubin.SmulImage.smulImage' (g : G) (U : Set α) := {x | g⁻¹ • x ∈ U} #align subset_img' Rubin.SmulImage.smulImage' def Rubin.SmulImage.smul_preimage' (g : G) (U : Set α) := {x | g • x ∈ U} #align subset_preimg' Rubin.SmulImage.smul_preimage' def Rubin.SmulImage.SmulImage (g : G) (U : Set α) := (· • ·) g '' U #align subset_img Rubin.SmulImage.SmulImage infixl:60 "•''" => Rubin.SmulImage.SmulImage theorem Rubin.SmulImage.smulImage_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U := rfl #align subset_img_def Rubin.SmulImage.smulImage_def theorem Rubin.SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U := by rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x] constructor · rintro ⟨y, yU, gyx⟩ let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.GroupActionExt.smul_congr g⁻¹ gyx exact ygx ▸ yU · intro h exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩ #align mem_smul'' Rubin.SmulImage.mem_smulImage theorem Rubin.SmulImage.mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U := by let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U rw [inv_inv] at msi exact msi #align mem_inv_smul'' Rubin.SmulImage.mem_inv_smulImage theorem Rubin.SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) := by ext rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ← mul_smul, mul_inv_rev] #align mul_smul'' Rubin.SmulImage.mul_smulImage @[simp] theorem Rubin.SmulImage.smulImage_smulImage {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U := (Rubin.SmulImage.mul_smulImage g h U).symm #align smul''_smul'' Rubin.SmulImage.smulImage_smulImage @[simp] theorem Rubin.SmulImage.one_smulImage (U : Set α) : (1 : G)•''U = U := by ext rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul] #align one_smul'' Rubin.SmulImage.one_smulImage theorem Rubin.SmulImage.disjoint_smulImage (g : G) {U V : Set α} : Disjoint U V → Disjoint (g•''U) (g•''V) := by intro disjoint_U_V rw [Set.disjoint_left] rw [Set.disjoint_left] at disjoint_U_V intro x x_in_gU by_contra h exact (disjoint_U_V (mem_smulImage.mp x_in_gU)) (mem_smulImage.mp h) #align disjoint_smul'' Rubin.SmulImage.disjoint_smulImage -- TODO: check if this is actually needed theorem Rubin.SmulImage.smulImage_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V := congr_arg fun W : Set α => g•''W #align smul''_congr Rubin.SmulImage.smulImage_congr theorem Rubin.SmulImage.smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V := by intro h1 x rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage] exact fun h2 => h1 h2 #align smul''_subset Rubin.SmulImage.smulImage_subset theorem Rubin.SmulImage.smulImage_union (g : G) {U V : Set α} : g•''U ∪ V = (g•''U) ∪ (g•''V) := by ext rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage] #align smul''_union Rubin.SmulImage.smulImage_union theorem Rubin.SmulImage.smulImage_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) := by ext rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff] #align smul''_inter Rubin.SmulImage.smulImage_inter theorem Rubin.SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U := by ext constructor · intro h; rw [Set.mem_preimage]; exact mem_smulImage.mp h · intro h; rw [Rubin.SmulImage.mem_smulImage]; exact Set.mem_preimage.mp h #align smul''_eq_inv_preimage Rubin.SmulImage.smulImage_eq_inv_preimage theorem Rubin.SmulImage.smulImage_eq_of_smul_eq {g h : G} {U : Set α} : (∀ x ∈ U, g • x = h • x) → g•''U = h•''U := by intro hU ext x rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage] constructor · intro k; let a := congr_arg ((· • ·) h⁻¹) (hU (g⁻¹ • x) k); simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k · intro k; let a := congr_arg ((· • ·) g⁻¹) (hU (h⁻¹ • x) k); simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k #align smul''_eq_of_smul_eq Rubin.SmulImage.smulImage_eq_of_smul_eq end SmulImage -------------------------------- section Support def Rubin.SmulSupport.Support (α : Type _) [MulAction G α] (g : G) := {x : α | g • x ≠ x} #align support Rubin.SmulSupport.Support theorem Rubin.SmulSupport.support_eq_not_fixed_by {g : G}: Rubin.SmulSupport.Support α g = (MulAction.fixedBy α g)ᶜ := by tauto #align support_eq_not_fixed_by Rubin.SmulSupport.support_eq_not_fixed_by theorem Rubin.SmulSupport.mem_support {x : α} {g : G} : x ∈ Rubin.SmulSupport.Support α g ↔ g • x ≠ x := by tauto #align mem_support Rubin.SmulSupport.mem_support theorem Rubin.SmulSupport.not_mem_support {x : α} {g : G} : x ∉ Rubin.SmulSupport.Support α g ↔ g • x = x := by rw [Rubin.SmulSupport.mem_support, Classical.not_not] #align mem_not_support Rubin.SmulSupport.not_mem_support theorem Rubin.SmulSupport.smul_mem_support {g : G} {x : α} : x ∈ Rubin.SmulSupport.Support α g → g • x ∈ Rubin.SmulSupport.Support α g := fun h => h ∘ smul_left_cancel g #align smul_in_support Rubin.SmulSupport.smul_mem_support theorem Rubin.SmulSupport.inv_smul_mem_support {g : G} {x : α} : x ∈ Rubin.SmulSupport.Support α g → g⁻¹ • x ∈ Rubin.SmulSupport.Support α g := fun h k => h (smul_inv_smul g x ▸ Rubin.GroupActionExt.smul_congr g k) #align inv_smul_in_support Rubin.SmulSupport.inv_smul_mem_support theorem Rubin.SmulSupport.fixed_of_disjoint {g : G} {x : α} {U : Set α} : x ∈ U → Disjoint U (Rubin.SmulSupport.Support α g) → g • x = x := fun x_in_U disjoint_U_support => Rubin.SmulSupport.not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U) #align fixed_of_disjoint Rubin.SmulSupport.fixed_of_disjoint theorem Rubin.SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} : Rubin.SmulSupport.Support α g ⊆ U → g•''U = U := by intro support_in_U ext x cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with xmoved xfixed exact ⟨fun _ => support_in_U xmoved, fun _ => SmulImage.mem_smulImage.mpr (support_in_U (Rubin.SmulSupport.inv_smul_mem_support xmoved))⟩ rw [Rubin.SmulImage.mem_smulImage, GroupActionExt.smul_eq_iff_inv_smul_eq.mp (not_mem_support.mp xfixed)] #align fixes_subset_within_support Rubin.SmulSupport.fixed_smulImage_in_support theorem Rubin.SmulSupport.smulImage_subset_in_support (g : G) (U V : Set α) : U ⊆ V → Rubin.SmulSupport.Support α g ⊆ V → g•''U ⊆ V := fun U_in_V support_in_V => Rubin.SmulSupport.fixed_smulImage_in_support g support_in_V ▸ Rubin.SmulImage.smulImage_subset g U_in_V #align moves_subset_within_support Rubin.SmulSupport.smulImage_subset_in_support theorem Rubin.SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] : Rubin.SmulSupport.Support α (g * h) ⊆ Rubin.SmulSupport.Support α g ∪ Rubin.SmulSupport.Support α h := by intro x x_in_support by_contra h_support let res := not_or.mp h_support exact x_in_support ((mul_smul g h x).trans ((congr_arg ((· • ·) g) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1)) #align support_mul Rubin.SmulSupport.support_mul theorem Rubin.SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h : G) : Rubin.SmulSupport.Support α (h * g * h⁻¹) = h•''Rubin.SmulSupport.Support α g := by ext x rw [Rubin.SmulSupport.mem_support, Rubin.SmulImage.mem_smulImage, Rubin.SmulSupport.mem_support, mul_smul, mul_smul] constructor · intro h1; by_contra h2; exact h1 ((congr_arg ((· • ·) h) h2).trans (smul_inv_smul _ _)) · intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2) #align support_conjugate Rubin.SmulSupport.support_conjugate theorem Rubin.SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) : Rubin.SmulSupport.Support α g⁻¹ = Rubin.SmulSupport.Support α g := by ext x rw [Rubin.SmulSupport.mem_support, Rubin.SmulSupport.mem_support] constructor · intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mp h2) · intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mpr h2) #align support_inv Rubin.SmulSupport.support_inv theorem Rubin.SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j : ℕ) : Rubin.SmulSupport.Support α (g ^ j) ⊆ Rubin.SmulSupport.Support α g := by intro x xmoved by_contra xfixed rw [Rubin.SmulSupport.mem_support] at xmoved induction j with | zero => apply xmoved; rw [pow_zero g, one_smul] | succ j j_ih => apply xmoved let j_ih := (congr_arg ((· • ·) g) (not_not.mp j_ih)).trans (not_mem_support.mp xfixed) simp at j_ih rw [← mul_smul, ← pow_succ] at j_ih exact j_ih #align support_pow Rubin.SmulSupport.support_pow theorem Rubin.SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G) : Rubin.SmulSupport.Support α ⁅g, h⁆ ⊆ Rubin.SmulSupport.Support α h ∪ (g•''Rubin.SmulSupport.Support α h) := by intro x x_in_support by_contra all_fixed rw [Set.mem_union] at all_fixed cases' @or_not (h • x = x) with xfixed xmoved · rw [Rubin.SmulSupport.mem_support, Rubin.bracket_mul, mul_smul, GroupActionExt.smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.SmulSupport.mem_support] at x_in_support exact ((Rubin.SmulSupport.support_conjugate α h g).symm ▸ (not_or.mp all_fixed).2) x_in_support · exact all_fixed (Or.inl xmoved) #align support_comm Rubin.SmulSupport.support_comm theorem Rubin.SmulSupport.disjoint_support_comm (f g : G) {U : Set α} : Rubin.SmulSupport.Support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x := by intro support_in_U disjoint_U x x_in_U have support_conj : Rubin.SmulSupport.Support α (g * f⁻¹ * g⁻¹) ⊆ g•''U := ((Rubin.SmulSupport.support_conjugate α f⁻¹ g).trans (Rubin.SmulImage.smulImage_congr g (Rubin.SmulSupport.support_inv α f))).symm ▸ Rubin.SmulImage.smulImage_subset g support_in_U have goal := (congr_arg ((· • ·) f) (Rubin.SmulSupport.fixed_of_disjoint x_in_U (Set.disjoint_of_subset_right support_conj disjoint_U))).symm simp at goal sorry -- rw [mul_smul, mul_smul] at goal -- exact goal.symm #align disjoint_support_comm Rubin.SmulSupport.disjoint_support_comm end Support -- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G := {g : G | ∀ x : α, g • x = x ∨ x ∈ U} #align rigid_stabilizer' rigidStabilizer' /- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/ def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G where carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x} mul_mem' ha hb x x_notin_U := by rw [mul_smul, hb x x_notin_U, ha x x_notin_U] inv_mem' hg x x_notin_U := Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U) one_mem' x _ := one_smul G x #align rigid_stabilizer rigidStabilizer theorem rist_supported_in_set {g : G} {U : Set α} : g ∈ rigidStabilizer G U → Rubin.SmulSupport.Support α g ⊆ U := fun h x x_in_support => by_contradiction (x_in_support ∘ h x) #align rist_supported_in_set rist_supported_in_set theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) : (rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) := by intro g g_in_ristV x x_notin_U have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V) exact g_in_ristV x x_notin_V #align rist_ss_rist rist_ss_rist end Actions ---------------------------------------------------------------- section TopologicalActions variable [TopologicalSpace α] [TopologicalSpace β] class Rubin.Topological.ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends MulAction G α where continuous : ∀ g : G, Continuous (@SMul.smul G α _ g) #align continuous_mul_action Rubin.Topological.ContinuousMulAction structure Rubin.Topological.equivariant_homeomorph (G α β : Type _) [Group G] [TopologicalSpace α] [TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where equivariant : GroupActionExt.is_equivariant G toFun #align equivariant_homeomorph Rubin.Topological.equivariant_homeomorph theorem Rubin.Topological.equivariant_fun [MulAction G α] [MulAction G β] (h : Rubin.Topological.equivariant_homeomorph G α β) : Rubin.GroupActionExt.is_equivariant G h.toFun := h.equivariant #align equivariant_fun Rubin.Topological.equivariant_fun theorem Rubin.Topological.equivariant_inv [MulAction G α] [MulAction G β] (h : Rubin.Topological.equivariant_homeomorph G α β) : Rubin.GroupActionExt.is_equivariant G h.invFun := by intro g x symm let e := congr_arg h.invFun (h.equivariant g (h.invFun x)) rw [h.left_inv _, h.right_inv _] at e exact e #align equivariant_inv Rubin.Topological.equivariant_inv variable [Rubin.Topological.ContinuousMulAction G α] theorem Rubin.Topological.img_open_open (g : G) (U : Set α) (h : IsOpen U) [Rubin.Topological.ContinuousMulAction G α] : IsOpen (g•''U) := by rw [Rubin.SmulImage.smulImage_eq_inv_preimage] exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h #align img_open_open Rubin.Topological.img_open_open theorem Rubin.Topological.support_open (g : G) [TopologicalSpace α] [T2Space α] [Rubin.Topological.ContinuousMulAction G α] : IsOpen (Rubin.SmulSupport.Support α g) := by apply isOpen_iff_forall_mem_open.mpr intro x xmoved rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩ exact ⟨V ∩ (g⁻¹•''U), fun y yW => -- TODO: don't use @-notation here @Disjoint.ne_of_mem α U V disjoint_U_V (g • y) (SmulImage.mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW)) y (Set.mem_of_mem_inter_left yW), IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U), ⟨x_in_V, SmulImage.mem_inv_smulImage.mpr gx_in_U⟩⟩ #align support_open Rubin.Topological.support_open end TopologicalActions ---------------------------------------------------------------- section FaithfulActions variable [MulAction G α] [FaithfulSMul G α] theorem Rubin.faithful_moves_point₁ {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 := haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm eq_of_smul_eq_smul h3 #align faithful_moves_point Rubin.faithful_moves_point₁ theorem Rubin.faithful_moves_point'₁ {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] : g ≠ 1 → ∃ x : α, g • x ≠ x := fun k => by_contradiction fun h => k <| Rubin.faithful_moves_point₁ <| Classical.not_exists_not.mp h #align faithful_moves_point' Rubin.faithful_moves_point'₁ theorem Rubin.faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} : g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x := by intro g_rigid g_ne_one rcases Rubin.faithful_moves_point'₁ α g_ne_one with ⟨x, xmoved⟩ exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩ #align faithful_rist_moves_point Rubin.faithful_rigid_stabilizer_moves_point theorem Rubin.ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.Support α g).Nonempty := by intro h1 cases' Rubin.faithful_moves_point'₁ α h1 with x h use x exact h #align ne_one_support_nempty Rubin.ne_one_support_nonempty -- FIXME: somehow clashes with another definition theorem Rubin.disjoint_commute₁ {f g : G} : Disjoint (Rubin.SmulSupport.Support α f) (Rubin.SmulSupport.Support α g) → Commute f g := by intro hdisjoint rw [← commutatorElement_eq_one_iff_commute] apply @Rubin.faithful_moves_point₁ _ α intro x rw [Rubin.bracket_mul, mul_smul, mul_smul, mul_smul] cases' @or_not (x ∈ Rubin.SmulSupport.Support α f) with hfmoved hffixed · rw [GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp (Set.disjoint_left.mp hdisjoint hfmoved)), SmulSupport.not_mem_support.mp (Set.disjoint_left.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hfmoved)), smul_inv_smul] cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with hgmoved hgfixed · rw [GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp <| Set.disjoint_right.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hgmoved)), smul_inv_smul, SmulSupport.not_mem_support.mp hffixed] · rw [ GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp hgfixed), GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp hffixed), SmulSupport.not_mem_support.mp hgfixed, SmulSupport.not_mem_support.mp hffixed ] #align disjoint_commute Rubin.disjoint_commute₁ end FaithfulActions ---------------------------------------------------------------- section RubinActions variable [TopologicalSpace α] [TopologicalSpace β] def Rubin.has_no_isolated_points (α : Type _) [TopologicalSpace α] := ∀ x : α, (nhdsWithin x ({x}ᶜ)) ≠ ⊥ #align has_no_isolated_points Rubin.has_no_isolated_points def Rubin.is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := ∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p)) #align is_locally_dense Rubin.is_locally_dense structure Rubin.RubinAction (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α, FaithfulSMul G α where locally_compact : LocallyCompactSpace α hausdorff : T2Space α no_isolated_points : Rubin.has_no_isolated_points α locallyDense : Rubin.is_locally_dense G α #align rubin_action Rubin.RubinAction end RubinActions ---------------------------------------------------------------- section Rubin.Period.period variable [MulAction G α] noncomputable def Rubin.Period.period (p : α) (g : G) : ℕ := sInf {n : ℕ | n > 0 ∧ g ^ n • p = p} #align period Rubin.Period.period theorem Rubin.Period.period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m := by constructor · by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith; rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩ | h; linarith; exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩ exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩ #align period_le_fix Rubin.Period.period_le_fix theorem Rubin.Period.notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0) (period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : ℕ, 0 < i → i < n → g ^ i • p ≠ p) : n ≤ Rubin.Period.period p g := by by_contra period_le exact (pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le)) (Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2 #align notfix_le_period Rubin.Period.notfix_le_period theorem Rubin.Period.notfix_le_period' {p : α} {g : G} {n : ℕ} (n_pos : n > 0) (period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : Fin n, 0 < (i : ℕ) → g ^ (i : ℕ) • p ≠ p) : n ≤ Rubin.Period.period p g := Rubin.Period.notfix_le_period n_pos period_pos fun (i : ℕ) (i_pos : 0 < i) (i_lt_n : i < n) => pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos #align notfix_le_period' Rubin.Period.notfix_le_period' /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/ theorem Rubin.Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 := by have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 := Rubin.Period.period_le_fix (by norm_num : 1 > 0) (by sorry trace "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]" : (1 : G) ^ 1 • p = p) linarith #align period_neutral_eq_one Rubin.Period.period_neutral_eq_one def Rubin.Period.periods (U : Set α) (H : Subgroup G) : Set ℕ := {n : ℕ | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n} #align periods Rubin.Period.periods /- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/ -- TODO: split into multiple lemmas theorem Rubin.Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) : (Rubin.Period.periods U H).Nonempty ∧ BddAbove (Rubin.Period.periods U H) ∧ ∃ (m : ℕ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p := by rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩ have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by intro p g; rw [gm_eq_one g]; sorry trace "./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]" have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by use 1 let p := Set.Nonempty.some U_nonempty; use p use 1 constructor · exact Set.Nonempty.some_mem U_nonempty · exact Rubin.Period.period_neutral_eq_one p have periods_bounded : BddAbove (Rubin.Period.periods U H) := by use m; intro some_period hperiod; rcases hperiod with ⟨p, g, hperiod⟩ rw [← hperiod.2] exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2 exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩ #align period_lemma Rubin.Period.periods_lemmas theorem Rubin.Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) : ∃ (p : α) (g : H) (n : ℕ), p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) := by rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩ rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩ use p use g use sSup (Rubin.Period.periods U H) -- TODO: cleanup? exact ⟨ hperiod.1, hperiod.2 ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, hperiod.2, rfl ⟩ #align period_from_exponent Rubin.Period.period_from_exponent theorem Rubin.Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) : ∀ (p : U) (g : H), 0 < Rubin.Period.period (p : α) (g : G) ∧ Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) := by rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩ intro p g have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by use p; use g simp exact ⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, le_csSup periods_bounded period_in_periods⟩ #align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods theorem Rubin.Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p := by cases eq_zero_or_neZero (Rubin.Period.period p g) with | inl h => rw [h]; simp | inr h => exact (Nat.sInf_mem (Nat.nonempty_of_pos_sInf (Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2 #align pow_period_fix Rubin.Period.pow_period_fix end Rubin.Period.period ---------------------------------------------------------------- section AlgebraicDisjointness variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α] def Rubin.Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := ∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥ #align is_locally_moving Rubin.Disjointness.IsLocallyMoving -- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin -- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU, -- by_contra, -- have some_in_U := ildGα U neU.some neU.some_mem, -- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U, -- tauto -- end -- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin -- intro xmoved, -- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩, -- let U := (g⁻¹ •'' V) ∩ W, -- use U, -- split, -- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W, -- split, -- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩, -- exact Set.disjoint_of_subset -- (Set.inter_subset_right (g⁻¹•''V) W) -- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (Set.mem_of_mem_inter_left (mem_smulImage.mp hy)) : g•''U ⊆ V) -- disjoint_V_W.symm -- end -- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin -- intros open_V x_in_V xmoved, -- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩, -- let U := W ∩ V, -- use U, -- split, -- exact is_open.inter open_W open_V, -- split, -- exact ⟨x_in_W,x_in_V⟩, -- split, -- exact Set.inter_subset_right W V, -- exact Set.disjoint_of_subset -- (Set.inter_subset_left W V) -- ((@smul''_inter _ _ _ _ g W V).symm ▸ Set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W) -- disjoint_W -- end -- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : (⋃(i : fin 2 × fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) := begin -- ext, -- simp only [Set.mem_Union, Set.mem_union], -- split, -- { simp only [forall_exists_index], -- intro i, -- fin_cases i; simp {contextual := tt}, }, -- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, }, -- end -- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin -- intros disjoint_f_g h hfh, -- let support_f := support α f, -- -- h is not the identity on support α f -- cases Set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx, -- let x_in_support_f := hx.1, -- let hx_ne_x := mem_support.mp hx.2, -- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V -- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩, -- let ristV_ne_bot := locally_moving V open_V (Set.nonempty_of_mem x_in_V), -- -- let f₂ be a nontrivial element of rigid_stabilizer G V -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩, -- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W -- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩, -- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved), -- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩, -- -- let f₁ be a nontrivial element of rigid_stabilizer G W -- let ristW_ne_bot := locally_moving W open_W (Set.nonempty_of_mem y_in_W), -- rcases (or_iff_right ristW_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩, -- use f₁, use f₂, -- -- note that f₁,f₂ commute with g since their support is in support α f -- split, -- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (Set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g), -- split, -- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g), -- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g -- let k := ⁅f₂,h⁆, -- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V -- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W, -- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm, -- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g. -- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin -- let := (support_comm α k f₁).trans (Set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)), -- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this, -- exact (this.trans $ (Set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support -- end, -- split, -- exact disjoint_commute (Set.disjoint_of_subset_left h3 disjoint_f_g), -- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity. -- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z := -- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W), -- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩, -- by_contra h5, -- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)), -- end -- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U := -- (mul_smul'' g h U).symm -- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin -- intro f_injective, -- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin -- by_contra, -- let := smul_congr (f j) h, -- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this, -- from i_ne_j (f_injective this), -- end in disjoint_nbhd x_moved, -- let ι2 := { p : ι×ι // p.1 ≠ p.2 }, -- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some, -- use U, -- split, -- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1), -- split, -- exact Set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1), -- intros i j i_ne_j, -- let U_inc := Set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩, -- let := (disjoint_smul'' (f j) (Set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm, -- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this, -- from this -- end -- lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℤ) • x) := begin -- intros i j same_img, -- by_contra i_ne_j, -- let same_img' := congr_arg ((•) (g ^ (-(j : ℤ)))) same_img, -- simp only [inv_smul_smul] at same_img', -- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img', -- simp only [add_left_neg, zpow_zero, one_smul] at same_img', -- let ij := |(i:ℤ) - (j:ℤ)|, -- rw ← sub_eq_add_neg at same_img', -- have xfixed : g^ij • x = x := begin -- cases abs_cases ((i:ℤ) - (j:ℤ)), -- { rw ← h.1 at same_img', exact same_img' }, -- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' } -- end, -- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)), -- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)), -- rw zero_sub at neg_le, -- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j), -- rw sub_zero at le_pos, -- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩, -- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed, -- end -- lemma int_to_nat (k : ℤ) (k_pos : k ≥ 1) : k = k.nat_abs := begin -- cases (int.nat_abs_eq k), -- { exact h }, -- { have : -(k.nat_abs : ℤ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg, -- rw ← h at this, by_contra, linarith } -- end -- lemma moves_inj_N {g : G} {x : α} {n : ℕ} (period_ge_n' : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℕ) • x) := begin -- have period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x, -- { intros k one_le_k k_lt_n, -- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)), -- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)), -- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n, -- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this, -- exact this }, -- have := moves_inj period_ge_n, -- done -- end -- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:ℤ) • x) := begin -- apply moves_inj, -- intros k k_ge_1 k_lt_5, -- by_contra xfixed, -- have k_div_12 : k * (12 / k) = 12 := begin -- interval_cases using k_ge_1 k_lt_5; norm_num -- end, -- have veryfixed : g^12 • x = x := begin -- let := smul_zpow_eq_of_smul_eq (12/k) xfixed, -- rw [← zpow_mul,k_div_12] at this, -- norm_cast at this -- end, -- exact xmoves veryfixed -- end -- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin -- intros locally_moving alg_disjoint, -- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty -- by_contra not_disjoint, -- let U := support α f ∩ support α (g^12), -- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint, -- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint -- let x := U_nonempty.some, -- have five_points : function.injective (λi : fin 5, g^(i:ℤ) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem), -- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩, -- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩, -- simp only at disjoint_img_V₁, -- let V := V₀ ∩ V₁, -- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V -- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩), -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- have comm_non_trivial : ¬commute f h := begin -- by_contra comm_trivial, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩, -- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V, -- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm, -- exact z_moved act_comm.symm, -- end, -- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g) -- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩, -- let h' := ⁅f₁,⁅f₂,h⁆⁆, -- -- now observe that supp([f₂, h]) ⊆ V ∪ f₂(V), and by the same reasoning supp(h')⊆V∪f₁(V)∪f₂(V)∪f₁f₂(V) -- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV), -- have support_h' : support α h' ⊆ ⋃(i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin -- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)), -- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this, -- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V), -- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u, -- exact rw_u.symm ▸ this, -- end, -- -- since h' is nontrivial, it has at least one point p in its support -- cases faithful_moves_point' α h'_non_trivial with p p_moves, -- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h') -- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin -- intro i, -- rw mem_support, -- by_contra p_fixed, -- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed, -- exact p_moves p_fixed, -- end, -- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂} -- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial, -- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some, -- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩, -- clear h_1_w h_1_h_h_w pigeonhole, -- let k := f₁^(choice i).1.val*f₂^(choice i).2.val, -- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice, -- rw ← same_choice }, -- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec, -- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec, -- -- but since g^(j−i)(V) is disjoint from V and k commutes with g, we know that g^(j−i)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V). -- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin -- let := (disjoint_smul'' (g^(-(i.val+j.val : ℤ))) (disjoint_img_V₁ i j i_ne_j)).symm, -- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this, -- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this, -- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this -- end, -- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val), -- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin -- let this := disjoint_smul'' k g_disjoint, -- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val, -- ← (k_commutes.symm.inv_left.pow_left i.val).eq, -- ← (k_commutes.symm.inv_left.pow_left j.val).eq, -- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this, -- from this -- end, -- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j) -- end -- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin -- intro alg_disjoint, -- by_contra non_commute, -- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩, -- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d, -- tauto -- end -- section remark_1_3 -- def G := equiv.perm (fin 2) -- def σ := equiv.swap (0 : fin 2) (1 : fin 2) -- example : is_algebraically_disjoint σ σ := begin -- intro h, -- fin_cases h, -- intro hyp1, -- exfalso, -- swap, intro hyp2, exfalso, -- -- is commute decidable? cc, -- sorry -- dec_trivial -- sorry -- second sorry needed -- end -- end remark_1_3 end AlgebraicDisjointness ---------------------------------------------------------------- section Rubin.RegularSupport.RegularSupport variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] def Rubin.RegularSupport.InteriorClosure (U : Set α) := interior (closure U) #align interior_closure Rubin.RegularSupport.InteriorClosure theorem Rubin.RegularSupport.is_open_interiorClosure (U : Set α) : IsOpen (Rubin.RegularSupport.InteriorClosure U) := isOpen_interior #align is_open_interior_closure Rubin.RegularSupport.is_open_interiorClosure theorem Rubin.RegularSupport.interiorClosure_mono {U V : Set α} : U ⊆ V → Rubin.RegularSupport.InteriorClosure U ⊆ Rubin.RegularSupport.InteriorClosure V := interior_mono ∘ closure_mono #align interior_closure_mono Rubin.RegularSupport.interiorClosure_mono def Set.is_regular_open (U : Set α) := Rubin.RegularSupport.InteriorClosure U = U #align Set.is_regular_open Set.is_regular_open theorem Set.is_regular_def (U : Set α) : U.is_regular_open ↔ Rubin.RegularSupport.InteriorClosure U = U := by rfl #align Set.is_regular_def Set.is_regular_def theorem Rubin.RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) := by intro U_open x x_in_U apply interior_mono subset_closure rw [U_open.interior_eq] exact x_in_U #align is_open.in_closure Rubin.RegularSupport.IsOpen.in_closure theorem Rubin.RegularSupport.IsOpen.interiorClosure_subset {U : Set α} : IsOpen U → U ⊆ Rubin.RegularSupport.InteriorClosure U := fun h => (subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure) #align is_open.interior_closure_subset Rubin.RegularSupport.IsOpen.interiorClosure_subset theorem Rubin.RegularSupport.regular_interior_closure (U : Set α) : (Rubin.RegularSupport.InteriorClosure U).is_regular_open := by rw [Set.is_regular_def] apply Set.Subset.antisymm exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure)) exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure) #align regular_interior_closure Rubin.RegularSupport.regular_interior_closure def Rubin.RegularSupport.RegularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) := Rubin.RegularSupport.InteriorClosure (Rubin.SmulSupport.Support α g) #align regular_support Rubin.RegularSupport.RegularSupport theorem Rubin.RegularSupport.regularSupport_regular {g : G} : (Rubin.RegularSupport.RegularSupport α g).is_regular_open := Rubin.RegularSupport.regular_interior_closure _ #align regular_regular_support Rubin.RegularSupport.regularSupport_regular theorem Rubin.RegularSupport.support_subset_regularSupport [T2Space α] (g : G) : Rubin.SmulSupport.Support α g ⊆ Rubin.RegularSupport.RegularSupport α g := Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g) #align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport theorem Rubin.RegularSupport.mem_regularSupport (g : G) (U : Set α) : U.is_regular_open → g ∈ rigidStabilizer G U → Rubin.RegularSupport.RegularSupport α g ⊆ U := fun U_ro g_moves => (Set.is_regular_def _).mp U_ro ▸ Rubin.RegularSupport.interiorClosure_mono (rist_supported_in_set g_moves) #align mem_regular_support Rubin.RegularSupport.mem_regularSupport -- FIXME: Weird naming? def Rubin.RegularSupport.AlgebraicCentralizer (f : G) : Set G := {h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g} #align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer end Rubin.RegularSupport.RegularSupport -- ---------------------------------------------------------------- -- section finite_exponent -- lemma coe_nat_fin {n i : ℕ} (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩ -- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] -- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : ℕ} -- (n_pos : 0 < n) -- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V)) : -- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := -- begin -- intros q hq i i_pos hcontra, -- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, done }, -- have hcontra' : g ^ (i : ℕ) • (q : α) ∈ g ^ (i : ℕ) •'' V, exact ⟨ q, hq, rfl ⟩, -- have giq_notin_V := Set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra', -- exact ((by done : g ^ 0•''V = V) ▸ giq_notin_V) hcontra -- end -- lemma moves_inj_period {g : G} {p : α} {n : ℕ} (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ℕ) • p) := begin -- have period_ge_n : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • p ≠ p, -- { intros k one_le_k k_lt_n gkp_eq_p, -- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p, -- rw period_eq_n at this, -- linarith }, -- exact moves_inj_N period_ge_n -- end -- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α] -- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) : -- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 := -- begin -- intro U_nonempty, -- by_contra exp_ne_zero, -- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩, -- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩, -- dsimp at disj', -- let V := U ∩ V', -- have V_ss_U : V ⊆ U := Set.inter_subset_left U V', -- have V'_ss_V : V ⊆ V' := Set.inter_subset_right U V', -- have V_open : is_open V := is_open.inter U_open V'_open, -- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩, -- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V), -- { intros i j i_ne_j W W_ss_giV W_ss_gjV, -- exact disj' i j i_ne_j -- (Set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V)) -- (Set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) }, -- have ristV_ne_bot := locally_moving V V_open (Set.nonempty_of_mem p_in_V), -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩, -- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g), -- have giq_notin_V : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V, -- have giq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ≠ (q : α), -- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, }, -- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 }, -- -- We have (hg)^i q = g^i q for all 0 < i < n -- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ℕ) < n → (h * g) ^ (i : ℕ) • q = (g : G) ^ (i : ℕ) • q, -- { intros i, induction (i : ℕ) with i', -- { intro, repeat {rw pow_zero} }, -- { intro succ_i'_lt_n, -- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ], -- have image_q_notin_V : g ^ i'.succ • q ∉ V, -- { have i'succ_ne_zero := ne_zero.pos i'.succ, -- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero }, -- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } }, -- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n -- have hgiq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → (h * g) ^ (i : ℕ) • q ≠ q, -- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) }, -- -- This even holds for i = n -- have hgnq_ne_q : (h * g) ^ n • q ≠ q, -- { -- Rewrite (hg)^n q = hg^n q -- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred), -- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩, -- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n), -- have : n = (i' : ℕ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm, -- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this], -- -- Now it follows from g^n q = q and h q ≠ q -- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q, -- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n, -- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) }, -- -- Finally, we derive a contradiction -- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U), -- rw ← n_eq_Sup at period_pos_le_n, -- cases (lt_or_eq_of_le period_pos_le_n.2), -- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) }, -- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) } -- end -- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry -- end finite_exponent -- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β] -- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry end Rubin