import Mathlib.Data.Finset.Basic import Mathlib.GroupTheory.GroupAction.Basic import Rubin.Support import Rubin.MulActionExt namespace Rubin -- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G := {g : G | ∀ x : α, g • x = x ∨ x ∈ U} #align rigid_stabilizer' Rubin.rigidStabilizer' -- A subgroup of G for which `Support α g ⊆ U`, or in other words, all elements of `G` that don't move points outside of `U`. def RigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G where carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x} mul_mem' ha hb x x_notin_U := by rw [mul_smul, hb x x_notin_U, ha x x_notin_U] inv_mem' hg x x_notin_U := smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U) one_mem' x _ := one_smul G x #align rigid_stabilizer Rubin.RigidStabilizer variable {G α: Type _} variable [Group G] variable [MulAction G α] theorem rigidStabilizer_support {g : G} {U : Set α} : g ∈ RigidStabilizer G U ↔ Support α g ⊆ U := ⟨ fun h x x_in_support => by_contradiction (x_in_support ∘ h x), by intro support_sub rw [<-Subgroup.mem_carrier] unfold RigidStabilizer; simp intro x x_notin_U by_contra h exact x_notin_U (support_sub h) ⟩ #align rist_supported_in_set Rubin.rigidStabilizer_support theorem rigidStabilizer_mono {U V : Set α} (V_ss_U : V ⊆ U) : (RigidStabilizer G V : Set G) ⊆ (RigidStabilizer G U : Set G) := by intro g g_in_ristV x x_notin_U have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V) exact g_in_ristV x x_notin_V #align rist_ss_rist Rubin.rigidStabilizer_mono theorem monotone_rigidStabilizer : Monotone (RigidStabilizer (α := α) G) := fun _ _ => rigidStabilizer_mono theorem rigidStabilizer_to_subgroup_closure {g : G} {U : Set α} : g ∈ RigidStabilizer G U → g ∈ Subgroup.closure { g : G | Support α g ⊆ U } := by rw [rigidStabilizer_support] intro h rw [Subgroup.mem_closure] intro V orbit_subset_V apply orbit_subset_V simp exact h theorem commute_if_rigidStabilizer_and_disjoint {g h : G} {U : Set α} [FaithfulSMul G α] : g ∈ RigidStabilizer G U → Disjoint U (Support α h) → Commute g h := by intro g_in_rist U_disj unfold Commute unfold SemiconjBy apply eq_of_smul_eq_smul (α := α) intro x by_cases x_in_U?: x ∈ U { rw [rigidStabilizer_support] at g_in_rist have x_notin_support : x ∉ Support α h := disjoint_not_mem U_disj x_in_U? rw [mul_smul] rw [not_mem_support.mp x_notin_support] rw [mul_smul] by_cases gx_in_U?: g • x ∈ U { symm apply not_mem_support.mp apply disjoint_not_mem U_disj exact gx_in_U? } { have gx_notin_support : g • x ∉ Support α g := by intro h exact gx_in_U? (g_in_rist h) rw [<-support_inv] at gx_notin_support rw [not_mem_support] at gx_notin_support simp at gx_notin_support symm at gx_notin_support rw [fixes_inv] at gx_notin_support rw [<-gx_notin_support] group_action rw [not_mem_support.mp x_notin_support] } } { have x_fixed : g • x = x := g_in_rist _ x_in_U? repeat rw [mul_smul] rw [x_fixed] by_cases hx_in_U?: h • x ∈ U { have hx_notin_support := disjoint_not_mem U_disj hx_in_U? rw [<-support_inv] at hx_notin_support rw [not_mem_support] at hx_notin_support group_action at hx_notin_support rw [<-hx_notin_support] exact x_fixed } { rw [g_in_rist _ hx_in_U?] } } end Rubin