import Mathlib.Topology.Basic import Mathlib.Topology.Separation import Rubin.SmulImage namespace Rubin variable {α : Type _} variable [TopologicalSpace α] /-- Defines a kind of "regularization" transformation made to sets, by calling `closure` followed by `interior` on those sets. A set is then said to be [`Regular`] if the InteriorClosure does not modify it. --/ def InteriorClosure (U : Set α) : Set α := interior (closure U) #align interior_closure Rubin.InteriorClosure @[simp] theorem InteriorClosure.def (U : Set α) : InteriorClosure U = interior (closure U) := by simp [InteriorClosure] @[simp] theorem InteriorClosure.fdef : InteriorClosure = (interior ∘ (closure (α := α))) := by ext; simp /-- A set `U` is said to be regular if the interior of the closure of `U` is equal to `U`. Notably, a regular set is also open, and the interior of a regular set is equal to itself. --/ def Regular (U : Set α) : Prop := InteriorClosure U = U @[simp] theorem Regular.def (U : Set α) : Regular U ↔ interior (closure U) = U := by simp [Regular] #align set.is_regular_def Rubin.Regular.def @[simp] theorem Regular.eq {U : Set α} (U_reg : Regular U) : interior (closure U) = U := (Regular.def U).mp U_reg instance Regular.instCoe {U : Set α} : Coe (Regular U) (interior (closure U) = U) where coe := Regular.eq /-- From this, the set of regular sets is the set of regular *open* sets. --/ theorem regular_open (U : Set α) : Regular U → IsOpen U := by intro h_reg rw [<-h_reg] simp theorem Regular.isOpen {U : Set α} (U_regular : Regular U): IsOpen U := regular_open _ U_regular theorem regular_interior {U : Set α} : Regular U → interior U = U := by intro h_reg rw [<-h_reg] simp theorem interiorClosure_open (U : Set α) : IsOpen (InteriorClosure U) := by simp #align is_open_interior_closure Rubin.interiorClosure_open theorem interiorClosure_subset {U : Set α} : IsOpen U → U ⊆ InteriorClosure U := by intro h apply subset_trans exact subset_interior_iff_isOpen.mpr h apply interior_mono exact subset_closure #align is_open.interior_closure_subset Rubin.interiorClosure_subset theorem interiorClosure_regular (U : Set α) : Regular (InteriorClosure U) := by apply Set.eq_of_subset_of_subset <;> unfold InteriorClosure { apply interior_mono nth_rw 2 [<-closure_closure (s := U)] apply closure_mono exact interior_subset } { nth_rw 1 [<-interior_interior] apply interior_mono exact subset_closure } #align regular_interior_closure Rubin.interiorClosure_regular theorem interiorClosure_mono (U V : Set α) : U ⊆ V → InteriorClosure U ⊆ InteriorClosure V := interior_mono ∘ closure_mono #align interior_closure_mono Rubin.interiorClosure_mono theorem monotone_interiorClosure : Monotone (InteriorClosure (α := α)) := fun a b => interiorClosure_mono a b theorem interiorClosure_subset_of_regular {U V : Set α} (U_ss_V : U ⊆ V) (V_regular : Regular V) : InteriorClosure U ⊆ V := by rw [<-V_regular] apply interiorClosure_mono assumption theorem compl_closure_regular_of_open {S : Set α} (S_open : IsOpen S) : Regular (closure S)ᶜ := by apply Set.eq_of_subset_of_subset · simp apply closure_mono rw [IsOpen.subset_interior_iff S_open] exact subset_closure · apply interiorClosure_subset simp @[simp] theorem interiorClosure_closure {S : Set α} (S_open : IsOpen S) : closure (InteriorClosure S) = closure S := by apply Set.eq_of_subset_of_subset · simp rw [<-Set.compl_subset_compl] rw [<-(compl_closure_regular_of_open S_open)] simp rfl · apply closure_mono exact interiorClosure_subset S_open @[simp] theorem interiorClosure_interior {S : Set α} : interior (InteriorClosure S) = (InteriorClosure S) := regular_interior (interiorClosure_regular S) theorem disjoint_interiorClosure_left {U V : Set α} (V_open : IsOpen V) : Disjoint U V → Disjoint (InteriorClosure U) V := by intro disj apply Set.disjoint_of_subset_left interior_subset exact Disjoint.closure_left disj V_open theorem disjoint_interiorClosure_right {U V : Set α} (U_open : IsOpen U) (disj : Disjoint U V) : Disjoint U (InteriorClosure V) := (disjoint_interiorClosure_left U_open (Disjoint.symm disj)).symm theorem disjoint_interiorClosure_left_iff {U V : Set α} (U_open : IsOpen U) (V_open : IsOpen V) : Disjoint U V ↔ Disjoint (InteriorClosure U) V := by constructor exact disjoint_interiorClosure_left V_open intro disj apply Set.disjoint_of_subset_left · exact subset_closure · rw [<-interiorClosure_closure U_open] exact Disjoint.closure_left disj V_open theorem disjoint_interiorClosure_iff {U V : Set α} (U_open : IsOpen U) (V_open : IsOpen V) : Disjoint U V ↔ Disjoint (InteriorClosure U) (InteriorClosure V) := by constructor { intro disj apply disjoint_interiorClosure_left (interiorClosure_regular V).isOpen apply disjoint_interiorClosure_right U_open exact disj } { intro disj rw [disjoint_interiorClosure_left_iff U_open V_open] symm rw [disjoint_interiorClosure_left_iff V_open (interiorClosure_open _)] symm exact disj } theorem subset_from_diff_closure_eq_empty {U V : Set α} (U_regular : Regular U) (V_open : IsOpen V) (V_diff_cl_empty : V \ closure U = ∅) : V ⊆ U := by have V_eq_interior : interior V = V := IsOpen.interior_eq V_open rw [<-V_eq_interior] rw [<-U_regular] apply interior_mono rw [<-Set.diff_eq_empty] exact V_diff_cl_empty theorem regular_nbhd [T2Space α] {u v : α} (u_ne_v : u ≠ v): ∃ (U V : Set α), Regular U ∧ Regular V ∧ Disjoint U V ∧ u ∈ U ∧ v ∈ V := by let ⟨U', V', U'_open, V'_open, u_in_U', v_in_V', disj⟩ := t2_separation u_ne_v let U := InteriorClosure U' let V := InteriorClosure V' use U, V repeat' apply And.intro · apply interiorClosure_regular · apply interiorClosure_regular · apply disjoint_interiorClosure_left (interiorClosure_regular V').isOpen apply disjoint_interiorClosure_right U'_open exact disj · exact (interiorClosure_subset U'_open) u_in_U' · exact (interiorClosure_subset V'_open) v_in_V' theorem regular_inter {U V : Set α} : Regular U → Regular V → Regular (U ∩ V) := by intro U_reg V_reg simp have UV_open : IsOpen (U ∩ V) := IsOpen.inter U_reg.isOpen V_reg.isOpen apply Set.eq_of_subset_of_subset · simp constructor · nth_rw 2 [<-U_reg] apply interiorClosure_mono simp · nth_rw 2 [<-V_reg] apply interiorClosure_mono simp · apply interiorClosure_subset exact UV_open theorem regular_sInter {S : Set (Set α)} (S_finite : Set.Finite S) (all_reg : ∀ U ∈ S, Regular U): Regular (⋂₀ S) := Set.Finite.induction_on' S_finite (by simp) (by intro U S' U_in_S _ _ IH rw [Set.sInter_insert] apply regular_inter · exact all_reg _ U_in_S · exact IH ) theorem interiorClosure_smulImage' {G : Type _} [Group G] [MulAction G α] (g : G) (U : Set α) (g_continuous : ∀ S : Set α, IsOpen S → IsOpen (g •'' S) ∧ IsOpen (g⁻¹ •'' S)) : InteriorClosure (g •'' U) = g •'' InteriorClosure U := by simp rw [<-smulImage_interior' _ _ g_continuous] rw [<-smulImage_closure' _ _ g_continuous] theorem interiorClosure_smulImage {G : Type _} [Group G] [MulAction G α] [ContinuousMulAction G α] (g : G) (U : Set α) : InteriorClosure (g •'' U) = g •'' InteriorClosure U := interiorClosure_smulImage' g U (continuousMulAction_elem_continuous α g) theorem smulImage_regular {G : Type _} [Group G] [MulAction G α] [ContinuousMulAction G α] (g : G) (U : Set α) : Regular U ↔ Regular (g •'' U) := by suffices ∀ V : Set α, ∀ h : G, Regular V → Regular (h •'' V) by constructor apply this have U_eq : g⁻¹ •'' (g •'' U) = U := by simp nth_rw 2 [<-U_eq] apply this intro U g U_reg unfold Regular rw [interiorClosure_smulImage] rw [U_reg] end Rubin