import Mathlib.GroupTheory.Subgroup.Basic import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.Topology.Basic import Rubin.RigidStabilizer namespace Rubin open Topology /-- A group action is said to be "locally dense" if for any open set `U` and `p ∈ U`, the closure of the orbit of `p` under the `RigidStabilizer G U` contains a neighborhood of `p`. The definition provided here is an equivalent one, that does not require using filters. See [`LocallyDense.from_rigidStabilizer_in_nhds`] and [`LocallyDense.rigidStabilizer_in_nhds`] to translate from/to the original definition. A weaker relationship, [`LocallyMoving`], is used whenever possible. The main difference between the two is that `LocallyMoving` does not allow us to find a group member `g ∈ G` such that `g • p ≠ p` — it only allows us to know that `∃ g ∈ RigidStabilizer G U, g ≠ 1`. --/ class LocallyDense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := isLocallyDense: ∀ U : Set α, IsOpen U → ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (RigidStabilizer G U) p)) #align is_locally_dense Rubin.LocallyDense theorem LocallyDense.from_rigidStabilizer_in_nhds (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] : (∀ U : Set α, IsOpen U → ∀ p ∈ U, closure (MulAction.orbit G•[U] p) ∈ 𝓝 p) → LocallyDense G α := by intro hyp constructor intro U U_open p p_in_U have closure_in_nhds := hyp U U_open p p_in_U rw [mem_nhds_iff] at closure_in_nhds rw [mem_interior] exact closure_in_nhds theorem LocallyDense.rigidStabilizer_in_nhds (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] [LocallyDense G α] {U : Set α} (U_open : IsOpen U) {p : α} (p_in_U : p ∈ U) : closure (MulAction.orbit G•[U] p) ∈ 𝓝 p := by rw [mem_nhds_iff] rw [<-mem_interior] apply LocallyDense.isLocallyDense <;> assumption lemma LocallyDense.elem_from_nonEmpty {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] [LocallyDense G α]: ∀ {U : Set α}, IsOpen U → Set.Nonempty U → ∃ p ∈ U, p ∈ interior (closure (MulAction.orbit G•[U] p)) := by intros U U_open H_ne exact ⟨H_ne.some, H_ne.some_mem, LocallyDense.isLocallyDense U U_open H_ne.some H_ne.some_mem⟩ /-- This is a stronger statement than `LocallyMoving.get_nontrivial_rist_elem`, as here we are able to prove that the nontrivial element does move `p`. The condition that `Filer.NeBot (𝓝[≠] p)` is automatically satisfied by the `HasNoIsolatedPoints` class. --/ theorem get_moving_elem_in_rigidStabilizer (G : Type _) {α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] [LocallyDense G α] [T1Space α] {p : α} [Filter.NeBot (𝓝[≠] p)] {U : Set α} (U_open : IsOpen U) (p_in_U : p ∈ U) : ∃ g : G, g ∈ G•[U] ∧ g • p ≠ p := by by_contra g_not_exist rw [<-Classical.not_forall_not] at g_not_exist simp at g_not_exist have orbit_singleton : MulAction.orbit (RigidStabilizer G U) p = {p} := by ext x rw [MulAction.mem_orbit_iff] rw [Set.mem_singleton_iff] simp constructor · intro ⟨g, g_in_rist, g_eq_p⟩ rw [g_not_exist g g_in_rist] at g_eq_p exact g_eq_p.symm · intro x_eq_p use 1 rw [x_eq_p, one_smul] exact ⟨Subgroup.one_mem _, rfl⟩ have regular_orbit_empty : interior (closure (MulAction.orbit (RigidStabilizer G U) p)) = ∅ := by rw [orbit_singleton] rw [closure_singleton] rw [interior_singleton] have p_in_regular_orbit := LocallyDense.isLocallyDense (G := G) U U_open p p_in_U rw [regular_orbit_empty] at p_in_regular_orbit exact p_in_regular_orbit class LocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := locally_moving: ∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥ #align is_locally_moving Rubin.LocallyMoving theorem LocallyMoving.get_nontrivial_rist_elem {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] [h_lm : LocallyMoving G α] {U: Set α} (U_open : IsOpen U) (U_nonempty : U.Nonempty) : ∃ x : G, x ∈ G•[U] ∧ x ≠ 1 := by have rist_ne_bot := h_lm.locally_moving U U_open U_nonempty exact (or_iff_right rist_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) variable {G α : Type _} variable [Group G] variable [TopologicalSpace α] variable [MulAction G α] variable [ContinuousMulAction G α] variable [FaithfulSMul G α] instance dense_locally_moving [T2Space α] [H_nip : HasNoIsolatedPoints α] [H_ld : LocallyDense G α] : LocallyMoving G α where locally_moving := by intros U U_open H_nonempty by_contra h_rs have ⟨elem, ⟨_, some_in_orbit⟩⟩ := H_ld.elem_from_nonEmpty U_open H_nonempty rw [h_rs] at some_in_orbit simp at some_in_orbit lemma disjoint_nbhd [T2Space α] {g : G} {x : α} (x_moved: g • x ≠ x) : ∃ U: Set α, IsOpen U ∧ x ∈ U ∧ Disjoint U (g •'' U) := by have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 (g • x) x x_moved let U := (g⁻¹ •'' V) ∩ W use U constructor { -- NOTE: if this is common, then we should make a tactic for solving IsOpen goals exact IsOpen.inter (img_open_open g⁻¹ V V_open) W_open } constructor { simp rw [mem_inv_smulImage] trivial } { apply Set.disjoint_of_subset · apply Set.inter_subset_right · intro y hy; show y ∈ V rw [<-smul_inv_smul g y] rw [<-mem_inv_smulImage] rw [mem_smulImage] at hy simp at hy simp exact hy.left · exact disjoint_V_W.symm } lemma disjoint_nbhd_in [T2Space α] {g : G} {x : α} {V : Set α} (V_open : IsOpen V) (x_in_V : x ∈ V) (x_moved : g • x ≠ x) : ∃ U : Set α, IsOpen U ∧ x ∈ U ∧ U ⊆ V ∧ Disjoint U (g •'' U) := by have ⟨W, W_open, x_in_W, disjoint_W_img⟩ := disjoint_nbhd x_moved use W ∩ V simp constructor { apply IsOpen.inter <;> assumption } constructor { constructor <;> assumption } show Disjoint (W ∩ V) (g •'' W ∩ V) apply Set.disjoint_of_subset · exact Set.inter_subset_left W V · show g •'' W ∩ V ⊆ g •'' W rewrite [smulImage_inter] exact Set.inter_subset_left _ _ · exact disjoint_W_img end Rubin