import Mathlib.GroupTheory.GroupAction.Basic import Mathlib.GroupTheory.Subgroup.Basic import Mathlib.GroupTheory.Subgroup.Actions import Mathlib.Topology.Basic import Mathlib.Tactic.FinCases import Rubin.RigidStabilizer import Rubin.SmulImage import Rubin.Topological import Rubin.FaithfulAction namespace Rubin class LocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] := locally_moving: ∀ U : Set α, IsOpen U → Set.Nonempty U → RigidStabilizer G U ≠ ⊥ #align is_locally_moving Rubin.LocallyMoving namespace LocallyMoving theorem get_nontrivial_rist_elem {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] [h_lm : LocallyMoving G α] {U: Set α} (U_open : IsOpen U) (U_nonempty : U.Nonempty) : ∃ x : G, x ∈ RigidStabilizer G U ∧ x ≠ 1 := by have rist_ne_bot := h_lm.locally_moving U U_open U_nonempty exact (or_iff_right rist_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) end LocallyMoving def AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) := ∀ h : G, ¬Commute f h → ∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1 #align is_algebraically_disjoint Rubin.AlgebraicallyDisjoint @[simp] theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) : MulAction.orbit (⊥ : Subgroup G) p = {p} := by ext1 rw [MulAction.mem_orbit_iff] constructor · rintro ⟨⟨_, g_bot⟩, g_to_x⟩ rw [← g_to_x, Set.mem_singleton_iff, Subgroup.mk_smul] exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _ exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩ #align orbit_bot Rubin.orbit_bot variable {G α : Type _} variable [Group G] variable [TopologicalSpace α] variable [ContinuousMulAction G α] variable [FaithfulSMul G α] instance dense_locally_moving [T2Space α] (H_nip : has_no_isolated_points α) (H_ld : LocallyDense G α) : LocallyMoving G α where locally_moving := by intros U _ H_nonempty by_contra h_rs have ⟨elem, ⟨_, some_in_orbit⟩⟩ := H_ld.nonEmpty H_nonempty have H_nebot := has_no_isolated_points_neBot H_nip elem rw [h_rs] at some_in_orbit simp at some_in_orbit lemma disjoint_nbhd [T2Space α] {g : G} {x : α} (x_moved: g • x ≠ x) : ∃ U: Set α, IsOpen U ∧ x ∈ U ∧ Disjoint U (g •'' U) := by have ⟨V, W, V_open, W_open, gx_in_V, x_in_W, disjoint_V_W⟩ := T2Space.t2 (g • x) x x_moved let U := (g⁻¹ •'' V) ∩ W use U constructor { -- NOTE: if this is common, then we should make a tactic for solving IsOpen goals exact IsOpen.inter (img_open_open g⁻¹ V V_open) W_open } constructor { simp rw [mem_inv_smulImage] trivial } { apply Set.disjoint_of_subset · apply Set.inter_subset_right · intro y hy; show y ∈ V rw [<-smul_inv_smul g y] rw [<-mem_inv_smulImage] rw [mem_smulImage] at hy simp at hy exact hy.left · exact disjoint_V_W.symm } lemma disjoint_nbhd_in [T2Space α] {g : G} {x : α} {V : Set α} (V_open : IsOpen V) (x_in_V : x ∈ V) (x_moved : g • x ≠ x) : ∃ U : Set α, IsOpen U ∧ x ∈ U ∧ U ⊆ V ∧ Disjoint U (g •'' U) := by have ⟨W, W_open, x_in_W, disjoint_W_img⟩ := disjoint_nbhd x_moved use W ∩ V simp constructor { apply IsOpen.inter <;> assumption } constructor { constructor <;> assumption } show Disjoint (W ∩ V) (g •'' W ∩ V) apply Set.disjoint_of_subset · exact Set.inter_subset_left W V · show g •'' W ∩ V ⊆ g •'' W rewrite [smulImage_inter] exact Set.inter_subset_left _ _ · exact disjoint_W_img -- Kind of a boring lemma but okay lemma rewrite_Union (f : Fin 2 × Fin 2 → Set α) : (⋃(i : Fin 2 × Fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) := by ext x simp only [Set.mem_iUnion, Set.mem_union] constructor · rewrite [forall_exists_index] intro i fin_cases i <;> simp only [Fin.zero_eta, Fin.mk_one] <;> intro h <;> simp only [h, true_or, or_true] · rintro ((h|h)|(h|h)) <;> exact ⟨_, h⟩ -- TODO: modify the proof to be less "let everything"-y, especially the first half lemma proposition_1_1_1 [h_lm : LocallyMoving G α] [T2Space α] (f g : G) (supp_disjoint : Disjoint (Support α f) (Support α g)) : AlgebraicallyDisjoint f g := by intros h h_not_commute -- h is not the identity on `Support α f` have f_h_not_disjoint := (mt (disjoint_commute (G := G) (α := α)) h_not_commute) have ⟨x, ⟨x_in_supp_f, x_in_supp_h⟩⟩ := Set.not_disjoint_iff.mp f_h_not_disjoint have hx_ne_x := mem_support.mp x_in_supp_h -- Since α is Hausdoff, there is a nonempty V ⊆ Support α f, with h •'' V disjoint from V have ⟨V, V_open, x_in_V, V_in_support, disjoint_img_V⟩ := disjoint_nbhd_in (support_open f) x_in_supp_f hx_ne_x -- let f₂ be a nontrivial element of the RigidStabilizer G V let ⟨f₂, f₂_in_rist_V, f₂_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem x_in_V) -- Re-use the Hausdoff property of α again, this time yielding W ⊆ V let ⟨y, y_moved⟩ := faithful_moves_point' α f₂_ne_one have y_in_V := (rist_supported_in_set f₂_in_rist_V) (mem_support.mpr y_moved) let ⟨W, W_open, y_in_W, W_in_V, disjoint_img_W⟩ := disjoint_nbhd_in V_open y_in_V y_moved -- Let f₁ be a nontrivial element of RigidStabilizer G W let ⟨f₁, f₁_in_rist_W, f₁_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open (Set.nonempty_of_mem y_in_W) use f₁ use f₂ constructor <;> try constructor · apply disjoint_commute (α := α) apply Set.disjoint_of_subset_left _ supp_disjoint calc Support α f₁ ⊆ W := rist_supported_in_set f₁_in_rist_W W ⊆ V := W_in_V V ⊆ Support α f := V_in_support · apply disjoint_commute (α := α) apply Set.disjoint_of_subset_left _ supp_disjoint calc Support α f₂ ⊆ V := rist_supported_in_set f₂_in_rist_V V ⊆ Support α f := V_in_support -- We claim that [f₁, [f₂, h]] is a nontrivial elelement of Centralizer G g let k := ⁅f₂, h⁆ have h₂ : ∀ z ∈ W, f₂ • z = k • z := by intro z z_in_W simp symm apply disjoint_support_comm f₂ h _ disjoint_img_V · exact W_in_V z_in_W · exact rist_supported_in_set f₂_in_rist_V constructor · -- then `k*f₁⁻¹*k⁻¹` is supported on k W = f₂ W, -- so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g. apply disjoint_commute (α := α) apply Set.disjoint_of_subset_left _ supp_disjoint have supp_f₁_subset_W := (rist_supported_in_set f₁_in_rist_W) show Support α ⁅f₁, ⁅f₂, h⁆⁆ ⊆ Support α f calc Support α ⁅f₁, k⁆ = Support α ⁅k, f₁⁆ := by rw [<-commutatorElement_inv, support_inv] _ ⊆ Support α f₁ ∪ (k •'' Support α f₁) := support_comm α k f₁ _ ⊆ W ∪ (k •'' Support α f₁) := Set.union_subset_union_left _ supp_f₁_subset_W _ ⊆ W ∪ (k •'' W) := by apply Set.union_subset_union_right exact (smulImage_subset k supp_f₁_subset_W) _ = W ∪ (f₂ •'' W) := by rw [<-smulImage_eq_of_smul_eq h₂] _ ⊆ V ∪ (f₂ •'' W) := Set.union_subset_union_left _ W_in_V _ ⊆ V ∪ V := by apply Set.union_subset_union_right apply smulImage_subset_in_support f₂ W V W_in_V exact rist_supported_in_set f₂_in_rist_V _ ⊆ V := by rw [Set.union_self] _ ⊆ Support α f := V_in_support · -- finally, [f₁,k] agrees with f₁ on W, so is not the identity. have h₄: ∀ z ∈ W, ⁅f₁, k⁆ • z = f₁ • z := by apply disjoint_support_comm f₁ k exact rist_supported_in_set f₁_in_rist_W rw [<-smulImage_eq_of_smul_eq h₂] exact disjoint_img_W let ⟨z, z_in_W, z_moved⟩ := faithful_rigid_stabilizer_moves_point f₁_in_rist_W f₁_ne_one by_contra h₅ rw [<-h₄ z z_in_W] at z_moved have h₆ : ⁅f₁, ⁅f₂, h⁆⁆ • z = z := by rw [h₅, one_smul] exact z_moved h₆ #align proposition_1_1_1 Rubin.proposition_1_1_1 @[simp] lemma smulImage_mul {g h : G} {U : Set α} : g •'' (h •'' U) = (g*h) •'' U := (mul_smulImage g h U) #check isOpen_iInter_of_finite lemma smul_inj_moves {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : ((f j)⁻¹ * f i) • x ≠ x := by by_contra h apply i_ne_j apply f_smul_inj group_action group_action at h exact h def smul_inj_nbhd {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : Set α := (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose lemma smul_inj_nbhd_open {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : IsOpen (smul_inj_nbhd i_ne_j f_smul_inj) := by exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.1 lemma smul_inj_nbhd_mem {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : x ∈ (smul_inj_nbhd i_ne_j f_smul_inj) := by exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.1 lemma smul_inj_nbhd_disjoint {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j) (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) : Disjoint (smul_inj_nbhd i_ne_j f_smul_inj) ((f j)⁻¹ * f i •'' (smul_inj_nbhd i_ne_j f_smul_inj)) := by exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.2 lemma disjoint_nbhd_fin {ι : Type*} [Fintype ι] [T2Space α] {f : ι → G} {x : α} (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)): ∃ U : Set α, IsOpen U ∧ x ∈ U ∧ (∀ (i j : ι), i ≠ j → Disjoint (f i •'' U) (f j •'' U)) := by let ι₂ := { p : ι × ι | p.1 ≠ p.2 } let U := ⋂(p : ι₂), smul_inj_nbhd p.prop f_smul_inj use U -- The notations provided afterwards tend to be quite ugly because we used `Exists.choose`, -- but the idea is that this all boils down to applying `Exists.choose_spec`, except in the disjointness case, -- where we transform `Disjoint (f i •'' U) (f j •'' U)` into `Disjoint U ((f i)⁻¹ * f j •'' U)` -- and transform both instances of `U` into `N`, the neighborhood of the chosen `(i, j) ∈ ι₂` repeat' constructor · apply isOpen_iInter_of_finite intro ⟨⟨i, j⟩, i_ne_j⟩ apply smul_inj_nbhd_open · apply Set.mem_iInter.mpr intro ⟨⟨i, j⟩, i_ne_j⟩ apply smul_inj_nbhd_mem · intro i j i_ne_j let N := smul_inj_nbhd i_ne_j f_smul_inj have U_subset_N : U ⊆ N := Set.iInter_subset (fun (⟨⟨i, j⟩, i_ne_j⟩ : ι₂) => (smul_inj_nbhd i_ne_j f_smul_inj)) ⟨⟨i, j⟩, i_ne_j⟩ rw [disjoint_comm, smulImage_disjoint_mul] apply Set.disjoint_of_subset U_subset_N · apply smulImage_subset exact U_subset_N · exact smul_inj_nbhd_disjoint i_ne_j f_smul_inj -- lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℤ) • x) := begin -- intros i j same_img, -- by_contra i_ne_j, -- let same_img' := congr_arg ((•) (g ^ (-(j : ℤ)))) same_img, -- simp only [inv_smul_smul] at same_img', -- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img', -- simp only [add_left_neg, zpow_zero, one_smul] at same_img', -- let ij := |(i:ℤ) - (j:ℤ)|, -- rw ← sub_eq_add_neg at same_img', -- have xfixed : g^ij • x = x := begin -- cases abs_cases ((i:ℤ) - (j:ℤ)), -- { rw ← h.1 at same_img', exact same_img' }, -- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' } -- end, -- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)), -- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)), -- rw zero_sub at neg_le, -- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j), -- rw sub_zero at le_pos, -- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩, -- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed, -- end -- lemma int_to_nat (k : ℤ) (k_pos : k ≥ 1) : k = k.nat_abs := begin -- cases (int.nat_abs_eq k), -- { exact h }, -- { have : -(k.nat_abs : ℤ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg, -- rw ← h at this, by_contra, linarith } -- end -- lemma moves_inj_N {g : G} {x : α} {n : ℕ} (period_ge_n' : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℕ) • x) := begin -- have period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x, -- { intros k one_le_k k_lt_n, -- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)), -- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)), -- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n, -- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this, -- exact this }, -- have := moves_inj period_ge_n, -- done -- end -- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:ℤ) • x) := begin -- apply moves_inj, -- intros k k_ge_1 k_lt_5, -- by_contra xfixed, -- have k_div_12 : k * (12 / k) = 12 := begin -- interval_cases using k_ge_1 k_lt_5; norm_num -- end, -- have veryfixed : g^12 • x = x := begin -- let := smul_zpow_eq_of_smul_eq (12/k) xfixed, -- rw [← zpow_mul,k_div_12] at this, -- norm_cast at this -- end, -- exact xmoves veryfixed -- end -- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin -- intros locally_moving alg_disjoint, -- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty -- by_contra not_disjoint, -- let U := support α f ∩ support α (g^12), -- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint, -- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint -- let x := U_nonempty.some, -- have five_points : function.injective (λi : fin 5, g^(i:ℤ) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem), -- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩, -- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩, -- simp only at disjoint_img_V₁, -- let V := V₀ ∩ V₁, -- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V -- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩), -- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩, -- have comm_non_trivial : ¬commute f h := begin -- by_contra comm_trivial, -- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩, -- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V, -- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm, -- exact z_moved act_comm.symm, -- end, -- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g) -- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩, -- let h' := ⁅f₁,⁅f₂,h⁆⁆, -- -- now observe that supp([f₂, h]) ⊆ V ∪ f₂(V), and by the same reasoning supp(h')⊆V∪f₁(V)∪f₂(V)∪f₁f₂(V) -- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV), -- have support_h' : support α h' ⊆ ⋃(i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin -- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)), -- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this, -- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V), -- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u, -- exact rw_u.symm ▸ this, -- end, -- -- since h' is nontrivial, it has at least one point p in its support -- cases faithful_moves_point' α h'_non_trivial with p p_moves, -- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h') -- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin -- intro i, -- rw mem_support, -- by_contra p_fixed, -- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed, -- exact p_moves p_fixed, -- end, -- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂} -- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial, -- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some, -- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩, -- clear h_1_w h_1_h_h_w pigeonhole, -- let k := f₁^(choice i).1.val*f₂^(choice i).2.val, -- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice, -- rw ← same_choice }, -- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec, -- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec, -- -- but since g^(j−i)(V) is disjoint from V and k commutes with g, we know that g^(j−i)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V). -- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin -- let := (disjoint_smul'' (g^(-(i.val+j.val : ℤ))) (disjoint_img_V₁ i j i_ne_j)).symm, -- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this, -- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this, -- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this -- end, -- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val), -- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin -- let this := disjoint_smul'' k g_disjoint, -- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val, -- ← (k_commutes.symm.inv_left.pow_left i.val).eq, -- ← (k_commutes.symm.inv_left.pow_left j.val).eq, -- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this, -- from this -- end, -- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j) -- end -- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin -- intro alg_disjoint, -- by_contra non_commute, -- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩, -- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d, -- tauto -- end -- section remark_1_3 -- def G := equiv.perm (fin 2) -- def σ := equiv.swap (0 : fin 2) (1 : fin 2) -- example : is_algebraically_disjoint σ σ := begin -- intro h, -- fin_cases h, -- intro hyp1, -- exfalso, -- swap, intro hyp2, exfalso, -- -- is commute decidable? cc, -- sorry -- dec_trivial -- sorry -- second sorry needed -- end -- end remark_1_3 end Rubin