import Mathlib.GroupTheory.GroupAction.Basic namespace Rubin variable {G α β : Type _} [Group G] variable [MulAction G α] theorem smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y := congr_arg ((· • ·) g) h #align smul_congr Rubin.smul_congr theorem smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x := ⟨fun h => (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h => (smul_congr g h).symm.trans (smul_inv_smul g x)⟩ #align smul_eq_iff_inv_smul_eq Rubin.smul_eq_iff_inv_smul_eq theorem smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) : g • x = x → g ^ n • x = x := by induction n with | zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff] | succ n n_ih => intro h nth_rw 2 [← (smul_congr g (n_ih h)).trans h] rw [← mul_smul, ← pow_succ] #align smul_pow_eq_of_smul_eq Rubin.smul_pow_eq_of_smul_eq theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) : g • x = x → g ^ n • x = x := by intro h cases n with | ofNat n => let res := smul_pow_eq_of_smul_eq n h; simp; exact res | negSucc n => let res := smul_eq_iff_inv_smul_eq.mp (smul_pow_eq_of_smul_eq (1 + n) h); simp rw [add_comm] exact res #align smul_zpow_eq_of_smul_eq Rubin.smul_zpow_eq_of_smul_eq -- TODO: turn this into a structure? def is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α] [MulAction G β] (f : α → β) := ∀ g : G, ∀ x : α, f (g • x) = g • f x #align is_equivariant Rubin.is_equivariant end Rubin