import Mathlib.Order.Filter.Basic import Mathlib.Topology.Basic import Mathlib.Topology.Bases import Mathlib.Topology.Separation def Filter.InBasis {α : Type _} (F : Filter α) (B : Set (Set α)) : Prop := ∀ (S : Set α), S ∈ F → ∃ T ∈ F, T ∈ B ∧ T ⊆ S /-- This is a formulation for prefilters in a basis that are ultra. It is a weaker statement than regular ultrafilters, but it allows for some nice properties, like the equivalence of cluster points and neighborhoods. --/ structure UltrafilterInBasis {α : Type} (F : Filter α) (B : Set (Set α)) := in_basis : Filter.InBasis F B ultra : ∀ (F' : Filter α), F'.InBasis B → F'.NeBot → F' ≤ F → F ≤ F' theorem Filter.InBasis.from_hasBasis {α ι : Type _} {F : Filter α} {pi : ι → Prop} {si : ι → Set α} (F_basis: Filter.HasBasis F pi si) {B : Set (Set α)} (basis_subset : ∀ i : ι, pi i → si i ∈ B) : Filter.InBasis F B := by intro S S_in_F let ⟨i, pi_i, si_i_ss⟩ := (F_basis.mem_iff' _).mp S_in_F use si i repeat' apply And.intro · rw [F_basis.mem_iff'] use i · apply basis_subset assumption · assumption variable {α : Type _} {F : Filter α} {B : Set (Set α)} theorem Filter.InBasis.mono {C : Set (Set α)} (F_basis : F.InBasis B) (B_ss_C : B ⊆ C) : F.InBasis C := by intro S S_in_F let ⟨T, T_in_F, T_in_B, T_ss_S⟩ := F_basis S S_in_F use T repeat' apply And.intro any_goals apply B_ss_C all_goals assumption def Filter.InBasis.basis {α : Type _} (F : Filter α) (B : Set (Set α)): Set (Set α) := { S : Set α | S ∈ F ∧ S ∈ B } theorem Filter.InBasis.basis_subset : Filter.InBasis.basis F B ⊆ B := fun _ ⟨_, S_in_B⟩ => S_in_B theorem Filter.InBasis.basis_nonempty (F_basis : Filter.InBasis F B): Set.Nonempty (Filter.InBasis.basis F B) := by let ⟨T, T_in_F, T_in_B, _⟩ := F_basis Set.univ Filter.univ_mem exact ⟨T, T_in_F, T_in_B⟩ theorem Filter.InBasis.basis_nonempty' (F_basis : Filter.InBasis F B): Nonempty (Filter.InBasis.basis F B) := by rw [Set.nonempty_coe_sort] exact Filter.InBasis.basis_nonempty F_basis theorem Filter.InBasis.basis_hasBasis (F_basis : Filter.InBasis F B): F.HasBasis (fun S => S ∈ Filter.InBasis.basis F B) id := by constructor intro T simp [basis, and_assoc] constructor · intro T_in_F exact F_basis T T_in_F · intro ⟨S, S_in_F, _, S_ss_T⟩ exact mem_of_superset S_in_F S_ss_T -- (map_mono : ∀ A B : Set α, A ⊆ B ↔ map A ⊆ map B) (F_basis : F.InBasis B) def Filter.InBasis.map_basis {α β : Type _} (F : Filter α) (B : Set (Set α)) (map : Set α → Set β): Filter β := ⨅ (S : Filter.InBasis.basis F B), Filter.principal (map S) lemma Filter.InBasis.map_directed {β : Type _} (F_basis : F.InBasis B) (map : Set α → Set β) (map_mono : Monotone map) : Directed (fun S T => S ≥ T) fun S : Filter.InBasis.basis F B => Filter.principal (map S.val) := by intro ⟨S, S_in_F, S_in_B⟩ ⟨T, T_in_F, T_in_B⟩ have S_int_T_in_F : S ∩ T ∈ F := inter_mem S_in_F T_in_F let ⟨U, U_in_F, U_in_B, U_ss_ST⟩ := F_basis _ S_int_T_in_F let ⟨U_ss_S, U_ss_T⟩ := Set.subset_inter_iff.mp U_ss_ST use ⟨U, U_in_F, U_in_B⟩ simp constructor <;> apply map_mono <;> assumption theorem Filter.InBasis.map_basis_neBot {β : Type _} [Nonempty β] (F_basis : F.InBasis B) (map : Set α → Set β) (map_mono : Monotone map) (map_nonempty : ∀ S ∈ B, Set.Nonempty (map S)) : Filter.NeBot (Filter.InBasis.map_basis F B map) := by apply Filter.iInf_neBot_of_directed · exact Filter.InBasis.map_directed F_basis map map_mono · intro ⟨S, S_in_F, S_in_B⟩ simp exact map_nonempty _ S_in_B theorem Filter.InBasis.map_basis_hasBasis {β : Type _} [Nonempty β] (F_basis : F.InBasis B) (map : Set α → Set β) (map_mono : Monotone map): (Filter.InBasis.map_basis F B map).HasBasis (fun T : Set α => T ∈ F ∧ T ∈ B) map := by unfold map_basis constructor intro T have basis_nonempty := Filter.InBasis.basis_nonempty' F_basis rw [Filter.mem_iInf_of_directed] · simp [basis, <-and_assoc] · exact Filter.InBasis.map_directed F_basis map map_mono theorem Filter.InBasis.map_basis_inBasis (F_basis : Filter.InBasis F B) (map : Set α → Set β) (map_mono : Monotone map) (map_nonempty : ∀ S ∈ B, Set.Nonempty (map S)) : (Filter.InBasis.map_basis F B map).InBasis (map '' B) := by intro S S_in_map have β_nonempty : Nonempty β := by let ⟨T, _, T_in_B⟩ := Filter.InBasis.basis_nonempty' F_basis let ⟨x, _⟩ := map_nonempty T T_in_B use x have has_basis := Filter.InBasis.map_basis_hasBasis F_basis map map_mono rw [has_basis.mem_iff'] at S_in_map let ⟨T, ⟨T_in_F, T_in_B⟩, mapT_ss_S⟩ := S_in_map use map T repeat' apply And.intro · rw [has_basis.mem_iff'] use T · simp use T · assumption theorem nhds_in_basis [TopologicalSpace α] (p : α) (B_basis : TopologicalSpace.IsTopologicalBasis B): (nhds p).InBasis B := Filter.InBasis.from_hasBasis B_basis.nhds_hasBasis (fun _ ⟨in_B, _⟩ => in_B) instance Filter.InBasis.order_bot : OrderBot { F : Filter α // F.InBasis B ∨ F = ⊥ } where bot := ⟨⊥, by right; rfl ⟩ bot_le := by intro ⟨F, _⟩ simp theorem Filter.InBasis.inf {F₁ F₂ : Filter α} (basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B) (F₁_basis : F₁.InBasis B) (F₂_basis : F₂.InBasis B) (nebot : Filter.NeBot (F₁ ⊓ F₂)): Filter.InBasis (F₁ ⊓ F₂) B := by intro T T_in_inf let ⟨T₁, T₁_in_F₁, T₂, T₂_in_F₂, T_eq⟩ := Filter.mem_inf_iff.mp T_in_inf let ⟨S₁, S₁_in_F₁, S₁_in_B, S₁_ss_T₁⟩ := F₁_basis T₁ T₁_in_F₁ let ⟨S₂, S₂_in_F₂, S₂_in_B, S₂_ss_T₂⟩ := F₂_basis T₂ T₂_in_F₂ let S := S₁ ∩ S₂ have S_in_inf : S ∈ F₁ ⊓ F₂ := by rw [Filter.mem_inf_iff] exact ⟨S₁, S₁_in_F₁, S₂, S₂_in_F₂, rfl⟩ use S repeat' apply And.intro · assumption · apply basis_closed S₁ S₂ S₁_in_B S₂_in_B apply Filter.nonempty_of_mem S_in_inf · rw [T_eq] exact Set.inter_subset_inter S₁_ss_T₁ S₂_ss_T₂ theorem Finset.Nonempty.induction {α : Type*} {p : ∀ (F : Finset α), F.Nonempty → Prop} [DecidableEq α] (initial : ∀ a : α, p {a} (Finset.singleton_nonempty a)) (insert : ∀ ⦃a : α⦄ {s : Finset α} (ne : s.Nonempty), a ∉ s → p s ne → p (insert a s) (Finset.insert_nonempty _ _)) : ∀ s, ∀ ne : s.Nonempty, p s ne := by intro S S_nonempty apply Finset.Nonempty.cons_induction exact initial intro a s a_notin_s s_nonempty p_rec simp apply insert <;> assumption theorem Finset.Nonempty.induction_on' {α : Type*} {p : ∀ (F : Finset α), F.Nonempty → Prop} [DecidableEq α] {I : Finset α} (I_nonempty : I.Nonempty) (initial : ∀ a : α, a ∈ I → p {a} (Finset.singleton_nonempty a)) (insert : ∀ ⦃a : α⦄ {s : Finset α} (ne : s.Nonempty), a ∈ I → a ∉ s → (s ⊆ I) → p s ne → p (insert a s) (Finset.insert_nonempty _ _)) : p I I_nonempty := by suffices ∀ (s : Finset α) (ne : Finset.Nonempty s), s ⊆ I → p s ne by exact this I I_nonempty (subset_refl _) apply Finset.Nonempty.induction · simp only [singleton_subset_iff] exact initial · intro a s ne a_notin_s h_ind insert_subset have ⟨a_in_I, s_ss_I⟩ := Finset.insert_subset_iff.mp insert_subset specialize h_ind s_ss_I apply insert <;> try assumption theorem Filter.InBasis.sInf_finset_closed (basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B) (I : Finset (Filter α)) (I_nonempty : Finset.Nonempty I) (in_basis : ∀ (F : Filter α), F ∈ I → F.InBasis B) (inf_nebot : Filter.NeBot (⨅ f ∈ I, f)) : Filter.InBasis (sInf I) B := by rw [sInf_eq_iInf] have dec_eq: DecidableEq (Filter α) := Classical.typeDecidableEq _ apply Finset.Nonempty.induction_on' I_nonempty (p := fun i _ => InBasis (⨅ a ∈ i, a) B) · simp exact in_basis · intro F I' _ F_in_I _ I'_ss_I I'_basis simp only [Finset.mem_insert_coe] rw [iInf_insert (s := I') (b := F)] apply Filter.InBasis.inf basis_closed _ I'_basis · simp only [<-Finset.mem_coe] show NeBot (id F ⊓ ⨅ f ∈ (I' : Set (Filter α)), id f) rw [<-iInf_insert] apply Filter.neBot_of_le (f := ⨅ f ∈ I, f) simp only [id_eq, <-Finset.mem_coe] apply iInf_le_iInf_of_subset exact Set.insert_subset F_in_I I'_ss_I · exact in_basis _ F_in_I theorem Filter.InBasis.sInf_closed (basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B) (I : Set (Filter α)) (I_nonempty : I.Nonempty) (in_basis : ∀ (F : Filter α), F ∈ I → F.InBasis B) (inf_nebot : Filter.NeBot (⨅ f ∈ I, f)) : Filter.InBasis (sInf I) B := by rw [sInf_eq_iInf] have iInf_I_eq := iInf_subtype (p := fun x => x ∈ I) (f := fun x => x.val) simp only at iInf_I_eq intro T T_in_sinf rw [<-iInf_I_eq] at T_in_sinf rw [Filter.mem_iInf_finite] at T_in_sinf let ⟨S, T_in_inf⟩ := T_in_sinf clear T_in_sinf have dec_eq: DecidableEq (Filter α) := Classical.typeDecidableEq _ let S' := Finset.image (Subtype.val) S have S'_eq : ⨅ i ∈ S, i.val = sInf S' := by rw [sInf_eq_iInf] simp rw [iInf_subtype] by_cases S_empty? : S.Nonempty swap { rw [Finset.not_nonempty_iff_eq_empty] at S_empty? rw [S_empty?] at T_in_inf simp at T_in_inf let ⟨F, F_in_I⟩ := I_nonempty rw [T_in_inf] simp let ⟨U, U_in_F, U_in_B, _⟩ := in_basis F F_in_I Set.univ Filter.univ_mem use U constructor · rw [<-iInf_I_eq] apply Filter.mem_iInf_of_mem ⟨F, F_in_I⟩ exact U_in_F · assumption } have S_basis : Filter.InBasis (⨅ i ∈ S, i.val) B := by rw [S'_eq] apply Filter.InBasis.sInf_finset_closed basis_closed · simp assumption · unfold_let simp only [Finset.mem_image] intro F ⟨F', _, F'_eq⟩ apply in_basis rw [<-F'_eq] exact Subtype.mem F' · simp only [<-Finset.mem_coe] apply Filter.neBot_of_le (f := ⨅ f ∈ I, f) apply iInf_le_iInf_of_subset simp have S_inf_le_I_inf : ⨅ i ∈ I, i ≤ ⨅ i ∈ S, i.val := by rw [S'_eq, sInf_eq_iInf] apply iInf_le_iInf_of_subset simp let ⟨U, U_in_inf, U_in_B, U_ss_T⟩ := S_basis T T_in_inf use U repeat' apply And.intro apply S_inf_le_I_inf all_goals assumption theorem Filter.InBasis.is_atomic (basis_closed : ∀ b1 b2 : Set α, b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B) : IsAtomic { F : Filter α // F.InBasis B ∨ F = ⊥ } := by by_cases α_nonempty? : Nonempty α swap { rw [not_nonempty_iff] at α_nonempty? constructor intro ⟨F, _⟩ left simp exact filter_eq_bot_of_isEmpty F } apply IsAtomic.of_isChain_bounded intro ch ch_chain ch_nonempty bot_notin_ch let ch' : Set (Filter α) := { F : Filter α | ∃ F' ∈ ch, F'.val = F } have ch'_chain : IsChain (fun x y => x ≥ y) ch' := by intro f f_in_ch' g g_in_ch' f_ne_g let ⟨f', f'_in_ch, f'_eq⟩ := f_in_ch' let ⟨g', g'_in_ch, g'_eq⟩ := g_in_ch' rw [<-f'_eq, <-g'_eq] simp have f'_ne_g' : f' ≠ g' := by intro eq rw [eq] at f'_eq rw [<-f'_eq, <-g'_eq] at f_ne_g exact f_ne_g rfl symm at f'_ne_g' apply ch_chain <;> assumption have bot_notin_ch' : ⊥ ∉ ch' := by intro ⟨f, f_in_ch, f_eq_bot⟩ simp at f_eq_bot rw [f_eq_bot] at f_in_ch exact bot_notin_ch f_in_ch let sch := sInf ch' have sch_neBot : Filter.NeBot sch := by apply Filter.sInf_neBot_of_directed apply ch'_chain.directedOn exact bot_notin_ch' have sch_basis : InBasis sch B := by apply Filter.InBasis.sInf_closed basis_closed · let ⟨x, x_in_ch⟩ := ch_nonempty use x simp only [Subtype.exists, exists_and_right, exists_eq_right, Set.mem_setOf_eq, Subtype.coe_eta, or_true, exists_prop] exact ⟨x.prop, x_in_ch⟩ · intro F F_in_ch simp at F_in_ch let ⟨F_basis, F_in_ch⟩ := F_in_ch apply F_basis.elim id intro F_eq_bot exfalso simp [F_eq_bot] at F_in_ch exact bot_notin_ch F_in_ch · rw [<-sInf_eq_iInf] exact sch_neBot let sch' : { F // InBasis F B ∨ F = ⊥ } := ⟨sch, Or.intro_left _ sch_basis⟩ have sch'_ne_bot : sch' ≠ ⊥ := by unfold_let intro eq_bot rw [Subtype.mk_eq_bot_iff] at eq_bot apply sch_neBot.ne exact eq_bot right; rfl use sch' use sch'_ne_bot unfold lowerBounds simp intro F F_basis F_in_ch apply sInf_le simp use F_basis -- TODO: define UltrafilterInBasis.of :)