From stdpp Require Import prelude. From iris Require Import prelude. From semantics.ts.stlc_extended Require Import lang. From semantics.lib Require Import maps. Fixpoint subst_map (xs : gmap string expr) (e : expr) : expr := match e with | LitInt n => LitInt n | Var y => match xs !! y with Some es => es | _ => Var y end | App e1 e2 => App (subst_map xs e1) (subst_map xs e2) | Lam x e => Lam x (subst_map (binder_delete x xs) e) | Plus e1 e2 => Plus (subst_map xs e1) (subst_map xs e2) | Pair e1 e2 => Pair (subst_map xs e1) (subst_map xs e2) | Fst e => Fst (subst_map xs e) | Snd e => Snd (subst_map xs e) | InjL e => InjL (subst_map xs e) | InjR e => InjR (subst_map xs e) | Case e e1 e2 => Case (subst_map xs e) (subst_map xs e1) (subst_map xs e2) end. Lemma subst_map_empty e : subst_map ∅ e = e. Proof. induction e; simpl; f_equal; eauto. destruct x; simpl; [done | by rewrite !delete_empty..]. Qed. Lemma subst_map_closed X e xs : closed X e → (∀ x : string, x ∈ dom xs → x ∉ X) → subst_map xs e = e. Proof. intros Hclosed Hd. induction e in xs, X, Hd, Hclosed |-*; simpl in *;try done. { (* Var *) apply bool_decide_spec in Hclosed. assert (xs !! x = None) as ->; last done. destruct (xs !! x) as [s | ] eqn:Helem; last done. exfalso; eapply Hd; last apply Hclosed. apply elem_of_dom; eauto. } { (* lambdas *) erewrite IHe; [done | done |]. intros y. destruct x as [ | x]; first apply Hd. simpl. rewrite dom_delete elem_of_difference not_elem_of_singleton. intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done. } (* all other cases *) all: unfold closed in *; simpl in *. all: repeat match goal with | H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ] end. all: repeat match goal with | H : ∀ _ _, _ → _ → subst_map _ _ = _ |- _ => erewrite H; clear H end; try done. Qed. Lemma subst_map_subst map x (e e': expr) : closed [] e' → subst_map map (subst x e' e) = subst_map (<[x:=e']>map) e. Proof. intros He'; induction e as [y|y e IH | | | | | | | | | ]in map|-*; simpl; try (f_equal; eauto). - case_decide. + simplify_eq/=. rewrite lookup_insert. rewrite (subst_map_closed []); [done | apply He' | ]. intros ? ?. apply not_elem_of_nil. + rewrite lookup_insert_ne; done. - destruct y; simpl; first done. + case_decide. * simplify_eq/=. by rewrite delete_insert_delete. * rewrite delete_insert_ne; last by congruence. done. Qed. (** We lift the notion of closedness [closed] to substitution maps. *) Definition subst_closed (X : list string) (map : gmap string expr) := ∀ x e, map !! x = Some e → closed X e. Lemma subst_closed_subseteq X map1 map2 : map1 ⊆ map2 → subst_closed X map2 → subst_closed X map1. Proof. intros Hsub Hclosed2 x e Hl. eapply Hclosed2, map_subseteq_spec; done. Qed. Lemma subst_closed_weaken X Y map1 map2 : Y ⊆ X → map1 ⊆ map2 → subst_closed Y map2 → subst_closed X map1. Proof. intros Hsub1 Hsub2 Hclosed2 x e Hl. eapply is_closed_weaken. 1:eapply Hclosed2, map_subseteq_spec; done. done. Qed. (** Lemma about the interaction with "normal" substitution. *) Lemma subst_subst_map x es map e : subst_closed [] map → subst x es (subst_map (delete x map) e) = subst_map (<[x:=es]> map) e. Proof. revert map es x; induction e; intros map v0 xx Hclosed; simpl; try (f_equal; eauto). - destruct (decide (xx=x)) as [->|Hne]. + rewrite lookup_delete // lookup_insert //. simpl. rewrite decide_True //. + rewrite lookup_delete_ne // lookup_insert_ne //. destruct (_ !! x) as [rr|] eqn:Helem. * apply Hclosed in Helem. by apply subst_is_closed_nil. * simpl. rewrite decide_False //. - destruct x; simpl; first by auto. case_decide. + simplify_eq. rewrite delete_idemp delete_insert_delete. done. + rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe. eapply subst_closed_subseteq; last done. apply map_delete_subseteq. Qed. Lemma subst'_subst_map b (es : expr) map e : subst_closed [] map → subst' b es (subst_map (binder_delete b map) e) = subst_map (binder_insert b es map) e. Proof. destruct b; first done. apply subst_subst_map. Qed. Lemma closed_subst_weaken e map X Y : subst_closed [] map → (∀ x, x ∈ X → x ∉ dom map → x ∈ Y) → closed X e → closed Y (subst_map map e). Proof. induction e in X, Y, map |-*; simpl; intros Hmclosed Hsub Hcl. { (* vars *) destruct (map !! x) as [es | ] eqn:Heq. + apply is_closed_weaken_nil. by eapply Hmclosed. + apply bool_decide_pack. apply Hsub; first by eapply bool_decide_unpack. by apply not_elem_of_dom. } { (* lambdas *) eapply IHe; last done. + eapply subst_closed_subseteq; last done. destruct x; first done. apply map_delete_subseteq. + intros y. destruct x as [ | x]; first by apply Hsub. rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left. destruct (decide (y = x)) as [ -> | Hneq]; first by left. right. eapply Hsub; first done. set_solver. } (* all other cases *) all: unfold closed in *; simpl in *. all: repeat match goal with | H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ] end. all: repeat match goal with | |- Is_true (_ && _) => apply andb_True; split end. all: try naive_solver. Qed. Lemma subst_map_closed' X Y Θ e: closed Y e → (∀ x, x ∈ Y → if Θ !! x is (Some e') then closed X e' else x ∈ X) → closed X (subst_map Θ e). Proof. induction e in X, Θ, Y |-*; simpl. { intros Hel%bool_decide_unpack Hcl. eapply Hcl in Hel. destruct (Θ !! x); first done. simpl. by eapply bool_decide_pack. } { intros Hcl Hcl'. destruct x as [|x]; simpl; first naive_solver. eapply IHe; first done. intros y [|]%elem_of_cons. + subst. rewrite lookup_delete. set_solver. + destruct (decide (x = y)); first by subst; rewrite lookup_delete; set_solver. rewrite lookup_delete_ne //=. eapply Hcl' in H. destruct lookup; last set_solver. eapply is_closed_weaken; eauto with set_solver. } all: unfold closed; simpl; naive_solver. Qed. Lemma subst_map_closed'_2 X Θ e: closed (X ++ (elements (dom Θ))) e -> subst_closed X Θ -> closed X (subst_map Θ e). Proof. intros Hcl Hsubst. eapply subst_map_closed'; first eassumption. intros x Hx. destruct (Θ !! x) as [e'|] eqn:Heq. - eauto. - by eapply elem_of_app in Hx as [H|H%elem_of_elements%not_elem_of_dom]. Qed.