From stdpp Require Export binders strings. From iris.prelude Require Import options. From semantics.lib Require Export maps. Declare Scope expr_scope. Declare Scope val_scope. Delimit Scope expr_scope with E. Delimit Scope val_scope with V. (** Expressions and vals. *) Inductive base_lit : Set := | LitInt (n : Z) | LitBool (b : bool) | LitUnit. Inductive un_op : Set := | NegOp | MinusUnOp. Inductive bin_op : Set := | PlusOp | MinusOp | MultOp (* Arithmetic *) | LtOp | LeOp | EqOp. (* Comparison *) Inductive expr := | Lit (l : base_lit) (* Base lambda calculus *) | Var (x : string) | Lam (x : binder) (e : expr) | App (e1 e2 : expr) (* Base types and their operations *) | UnOp (op : un_op) (e : expr) | BinOp (op : bin_op) (e1 e2 : expr) | If (e0 e1 e2 : expr) (* Polymorphism *) | TApp (e : expr) | TLam (e : expr) | Pack (e : expr) | Unpack (x : binder) (e1 e2 : expr) (* Products *) | Pair (e1 e2 : expr) | Fst (e : expr) | Snd (e : expr) (* Sums *) | InjL (e : expr) | InjR (e : expr) | Case (e0 : expr) (e1 : expr) (e2 : expr) (* Isorecursive types *) | Roll (e : expr) | Unroll (e : expr) . Bind Scope expr_scope with expr. Inductive val := | LitV (l : base_lit) | LamV (x : binder) (e : expr) | TLamV (e : expr) | PackV (v : val) | PairV (v1 v2 : val) | InjLV (v : val) | InjRV (v : val) | RollV (v : val) . Bind Scope val_scope with val. Fixpoint of_val (v : val) : expr := match v with | LitV l => Lit l | LamV x e => Lam x e | TLamV e => TLam e | PackV v => Pack (of_val v) | PairV v1 v2 => Pair (of_val v1) (of_val v2) | InjLV v => InjL (of_val v) | InjRV v => InjR (of_val v) | RollV v => Roll (of_val v) end. Fixpoint to_val (e : expr) : option val := match e with | Lit l => Some $ LitV l | Lam x e => Some (LamV x e) | TLam e => Some (TLamV e) | Pack e => to_val e ≫= (λ v, Some $ PackV v) | Pair e1 e2 => to_val e1 ≫= (λ v1, to_val e2 ≫= (λ v2, Some $ PairV v1 v2)) | InjL e => to_val e ≫= (λ v, Some $ InjLV v) | InjR e => to_val e ≫= (λ v, Some $ InjRV v) | Roll e => to_val e ≫= (λ v, Some $ RollV v) | _ => None end. (** Equality and other typeclass stuff *) Lemma to_of_val v : to_val (of_val v) = Some v. Proof. by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _). Qed. Lemma of_to_val e v : to_val e = Some v → of_val v = e. Proof. revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal. Qed. #[export] Instance of_val_inj : Inj (=) (=) of_val. Proof. by intros ?? Hv; apply (inj Some); rewrite <-!to_of_val, Hv. Qed. (** structural computational version *) Fixpoint is_val (e : expr) : Prop := match e with | Lit l => True | Lam x e => True | TLam e => True | Pack e => is_val e | Pair e1 e2 => is_val e1 ∧ is_val e2 | InjL e => is_val e | InjR e => is_val e | Roll e => is_val e | _ => False end. Lemma is_val_spec e : is_val e ↔ ∃ v, to_val e = Some v. Proof. induction e as [ | | ? e IH | e1 IH1 e2 IH2 | e IH | ? e1 IH1 e2 IH2 | e1 IH1 e2 IH2 e3 IH3 | e IH | e IH | e IH | ? e1 IH1 e2 IH2 | e1 IH1 e2 IH2 | e IH | e IH | e IH | e IH | e1 IH1 e2 IH2 e3 IH3 | e IH | e IH]; simpl; (split; [ | intros (v & Heq)]); simplify_option_eq; try naive_solver. - rewrite IH. intros (v & ->). eauto. - rewrite IH1, IH2. intros [(v1 & ->) (v2 & ->)]. eauto. - rewrite IH. intros (v & ->). eauto. - rewrite IH. intros (v & ->); eauto. - rewrite IH. intros (v & ->). eauto. Qed. Global Instance base_lit_eq_dec : EqDecision base_lit. Proof. solve_decision. Defined. Global Instance un_op_eq_dec : EqDecision un_op. Proof. solve_decision. Defined. Global Instance bin_op_eq_dec : EqDecision bin_op. Proof. solve_decision. Defined. (** Substitution *) Fixpoint subst (x : string) (es : expr) (e : expr) : expr := match e with | Lit _ => e | Var y => if decide (x = y) then es else Var y | Lam y e => Lam y $ if decide (BNamed x = y) then e else subst x es e | App e1 e2 => App (subst x es e1) (subst x es e2) | TApp e => TApp (subst x es e) | TLam e => TLam (subst x es e) | Pack e => Pack (subst x es e) | Unpack y e1 e2 => Unpack y (subst x es e1) (if decide (BNamed x = y) then e2 else subst x es e2) | UnOp op e => UnOp op (subst x es e) | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2) | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2) | Pair e1 e2 => Pair (subst x es e1) (subst x es e2) | Fst e => Fst (subst x es e) | Snd e => Snd (subst x es e) | InjL e => InjL (subst x es e) | InjR e => InjR (subst x es e) | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2) | Roll e => Roll (subst x es e) | Unroll e => Unroll (subst x es e) end. Definition subst' (mx : binder) (es : expr) : expr → expr := match mx with BNamed x => subst x es | BAnon => id end. (** The stepping relation *) Definition un_op_eval (op : un_op) (v : val) : option val := match op, v with | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b) | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n) | _, _ => None end. Definition bin_op_eval_int (op : bin_op) (n1 n2 : Z) : option base_lit := match op with | PlusOp => Some $ LitInt (n1 + n2) | MinusOp => Some $ LitInt (n1 - n2) | MultOp => Some $ LitInt (n1 * n2) | LtOp => Some $ LitBool (bool_decide (n1 < n2)) | LeOp => Some $ LitBool (bool_decide (n1 ≤ n2)) | EqOp => Some $ LitBool (bool_decide (n1 = n2)) end%Z. Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val := match v1, v2 with | LitV (LitInt n1), LitV (LitInt n2) => LitV <$> bin_op_eval_int op n1 n2 | _, _ => None end. Inductive base_step : expr → expr → Prop := | BetaS x e1 e2 e' : is_val e2 → e' = subst' x e2 e1 → base_step (App (Lam x e1) e2) e' | TBetaS e1 : base_step (TApp (TLam e1)) e1 | UnpackS e1 e2 e' x : is_val e1 → e' = subst' x e1 e2 → base_step (Unpack x (Pack e1) e2) e' | UnOpS op e v v' : to_val e = Some v → un_op_eval op v = Some v' → base_step (UnOp op e) (of_val v') | BinOpS op e1 v1 e2 v2 v' : to_val e1 = Some v1 → to_val e2 = Some v2 → bin_op_eval op v1 v2 = Some v' → base_step (BinOp op e1 e2) (of_val v') | IfTrueS e1 e2 : base_step (If (Lit $ LitBool true) e1 e2) e1 | IfFalseS e1 e2 : base_step (If (Lit $ LitBool false) e1 e2) e2 | FstS e1 e2 : is_val e1 → is_val e2 → base_step (Fst (Pair e1 e2)) e1 | SndS e1 e2 : is_val e1 → is_val e2 → base_step (Snd (Pair e1 e2)) e2 | CaseLS e e1 e2 : is_val e → base_step (Case (InjL e) e1 e2) (App e1 e) | CaseRS e e1 e2 : is_val e → base_step (Case (InjR e) e1 e2) (App e2 e) | UnrollS e : is_val e → base_step (Unroll (Roll e)) e . (* Misc *) Lemma is_val_of_val v : is_val (of_val v). Proof. apply is_val_spec. rewrite to_of_val. eauto. Qed. (** If [e1] makes a base step to a value under some state [σ1] then any base step from [e1] under any other state [σ1'] must necessarily be to a value. *) Lemma base_step_to_val e1 e2 e2' : base_step e1 e2 → base_step e1 e2' → is_Some (to_val e2) → is_Some (to_val e2'). Proof. destruct 1; inversion 1; naive_solver. Qed. (** We define evaluation contexts *) (** In contrast to before, we formalize contexts differently in a non-recursive way. Evaluation contexts are now lists of evaluation context items, and we specify how to plug these items together when filling the context. For instance: - HoleCtx becomes [], the empty list of context items - e1 ● becomes [AppRCtx e1] - e1 (● + v2) becomes [PlusLCtx v2; AppRCtx e1] *) Inductive ectx_item := | AppLCtx (v2 : val) | AppRCtx (e1 : expr) | TAppCtx | PackCtx | UnpackCtx (x : binder) (e2 : expr) | UnOpCtx (op : un_op) | BinOpLCtx (op : bin_op) (v2 : val) | BinOpRCtx (op : bin_op) (e1 : expr) | IfCtx (e1 e2 : expr) | PairLCtx (v2 : val) | PairRCtx (e1 : expr) | FstCtx | SndCtx | InjLCtx | InjRCtx | CaseCtx (e1 : expr) (e2 : expr) | UnrollCtx | RollCtx . Definition fill_item (Ki : ectx_item) (e : expr) : expr := match Ki with | AppLCtx v2 => App e (of_val v2) | AppRCtx e1 => App e1 e | TAppCtx => TApp e | PackCtx => Pack e | UnpackCtx x e2 => Unpack x e e2 | UnOpCtx op => UnOp op e | BinOpLCtx op v2 => BinOp op e (of_val v2) | BinOpRCtx op e1 => BinOp op e1 e | IfCtx e1 e2 => If e e1 e2 | PairLCtx v2 => Pair e (of_val v2) | PairRCtx e1 => Pair e1 e | FstCtx => Fst e | SndCtx => Snd e | InjLCtx => InjL e | InjRCtx => InjR e | CaseCtx e1 e2 => Case e e1 e2 | UnrollCtx => Unroll e | RollCtx => Roll e end. (* The main [fill] operation is defined below. *) (** Basic properties about the language *) Global Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki). Proof. induction Ki; intros ???; simplify_eq/=; auto with f_equal. Qed. Lemma fill_item_val Ki e : is_Some (to_val (fill_item Ki e)) → is_Some (to_val e). Proof. intros [v ?]. induction Ki; simplify_option_eq; eauto. Qed. Lemma val_base_stuck e1 e2 : base_step e1 e2 → to_val e1 = None. Proof. destruct 1; naive_solver. Qed. Lemma of_val_lit v l : of_val v = (Lit l) → v = LitV l. Proof. destruct v; simpl; inversion 1; done. Qed. Lemma of_val_pair_inv (v v1 v2 : val) : of_val v = Pair (of_val v1) (of_val v2) → v = PairV v1 v2. Proof. destruct v; simpl; inversion 1. apply of_val_inj in H1. apply of_val_inj in H2. subst; done. Qed. Lemma of_val_injl_inv (v v' : val) : of_val v = InjL (of_val v') → v = InjLV v'. Proof. destruct v; simpl; inversion 1. apply of_val_inj in H1. subst; done. Qed. Lemma of_val_injr_inv (v v' : val) : of_val v = InjR (of_val v') → v = InjRV v'. Proof. destruct v; simpl; inversion 1. apply of_val_inj in H1. subst; done. Qed. Ltac simplify_val := repeat match goal with | H: to_val (of_val ?v) = ?o |- _ => rewrite to_of_val in H | H: is_val ?e |- _ => destruct (proj1 (is_val_spec e) H) as (? & ?); clear H | H: to_val ?e = ?v |- _ => is_var e; specialize (of_to_val _ _ H); intros <-; clear H | H: of_val ?v = Lit ?l |- _ => is_var v; specialize (of_val_lit _ _ H); intros ->; clear H | |- context[to_val (of_val ?e)] => rewrite to_of_val end. Lemma base_ectxi_step_val Ki e e2 : base_step (fill_item Ki e) e2 → is_Some (to_val e). Proof. revert e2. induction Ki; inversion_clear 1; simplify_option_eq; simplify_val; eauto. Qed. Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 : to_val e1 = None → to_val e2 = None → fill_item Ki1 e1 = fill_item Ki2 e2 → Ki1 = Ki2. Proof. revert Ki1. induction Ki2; intros Ki1; induction Ki1; try naive_solver eauto with f_equal. all: intros ?? Heq; injection Heq; intros ??; simplify_eq; simplify_val; naive_solver. Qed. Section contexts. Notation ectx := (list ectx_item). Definition empty_ectx : ectx := []. Definition comp_ectx : ectx → ectx → ectx := flip (++). Definition fill (K : ectx) (e : expr) : expr := foldl (flip fill_item) e K. Lemma fill_app (K1 K2 : ectx) e : fill (K1 ++ K2) e = fill K2 (fill K1 e). Proof. apply foldl_app. Qed. Lemma fill_empty e : fill empty_ectx e = e. Proof. done. Qed. Lemma fill_comp K1 K2 e : fill K1 (fill K2 e) = fill (comp_ectx K1 K2) e. Proof. unfold fill, comp_ectx; simpl. by rewrite foldl_app. Qed. Global Instance fill_inj K : Inj (=) (=) (fill K). Proof. induction K as [|Ki K IH]; unfold Inj; naive_solver. Qed. Lemma fill_val K e : is_Some (to_val (fill K e)) → is_Some (to_val e). Proof. induction K as [|Ki K IH] in e |-*; [ done |]. by intros ?%IH%fill_item_val. Qed. Lemma fill_not_val K e : to_val e = None → to_val (fill K e) = None. Proof. rewrite !eq_None_not_Some. eauto using fill_val. Qed. End contexts. (** Contextual steps *) Inductive contextual_step (e1 : expr) (e2 : expr) : Prop := Ectx_step K e1' e2' : e1 = fill K e1' → e2 = fill K e2' → base_step e1' e2' → contextual_step e1 e2. Lemma base_contextual_step e1 e2 : base_step e1 e2 → contextual_step e1 e2. Proof. apply Ectx_step with empty_ectx; by rewrite ?fill_empty. Qed. Lemma fill_contextual_step K e1 e2 : contextual_step e1 e2 → contextual_step (fill K e1) (fill K e2). Proof. destruct 1 as [K' e1' e2' -> ->]. rewrite !fill_comp. by econstructor. Qed. (** *** closedness *) Fixpoint is_closed (X : list string) (e : expr) : bool := match e with | Var x => bool_decide (x ∈ X) | Lam x e => is_closed (x :b: X) e | Unpack x e1 e2 => is_closed X e1 && is_closed (x :b: X) e2 | Lit _ => true | UnOp _ e | Fst e | Snd e | InjL e | InjR e | TApp e | TLam e | Pack e | Roll e | Unroll e => is_closed X e | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 => is_closed X e1 && is_closed X e2 | If e0 e1 e2 | Case e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2 end. (** [closed] states closedness as a Coq proposition, through the [Is_true] transformer. *) Definition closed (X : list string) (e : expr) : Prop := Is_true (is_closed X e). #[export] Instance closed_proof_irrel X e : ProofIrrel (closed X e). Proof. unfold closed. apply _. Qed. #[export] Instance closed_dec X e : Decision (closed X e). Proof. unfold closed. apply _. Defined. (** closed expressions *) Lemma is_closed_weaken X Y e : is_closed X e → X ⊆ Y → is_closed Y e. Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed. Lemma is_closed_weaken_nil X e : is_closed [] e → is_closed X e. Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed. Lemma is_closed_subst X e x es : is_closed [] es → is_closed (x :: X) e → is_closed X (subst x es e). Proof. intros ?. induction e in X |-*; simpl; intros ?; destruct_and?; split_and?; simplify_option_eq; try match goal with | H : ¬(_ ∧ _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable] end; eauto using is_closed_weaken with set_solver. Qed. Lemma is_closed_do_subst' X e x es : is_closed [] es → is_closed (x :b: X) e → is_closed X (subst' x es e). Proof. destruct x; eauto using is_closed_subst. Qed. Lemma closed_is_closed X e : is_closed X e = true ↔ closed X e. Proof. unfold closed. split. - apply Is_true_eq_left. - apply Is_true_eq_true. Qed. (** Substitution lemmas *) Lemma subst_is_closed X e x es : is_closed X e → x ∉ X → subst x es e = e. Proof. induction e in X |-*; simpl; rewrite ?bool_decide_spec, ?andb_True; intros ??; repeat case_decide; simplify_eq; simpl; f_equal; intuition eauto with set_solver. Qed. Lemma subst_is_closed_nil e x es : is_closed [] e → subst x es e = e. Proof. intros. apply subst_is_closed with []; set_solver. Qed. Lemma subst'_is_closed_nil e x es : is_closed [] e → subst' x es e = e. Proof. intros. destruct x as [ | x]. { done. } by apply subst_is_closed_nil. Qed. (** ** More on the contextual semantics *) Definition base_reducible (e : expr) := ∃ e', base_step e e'. Definition base_irreducible (e : expr) := ∀ e', ¬base_step e e'. Definition base_stuck (e : expr) := to_val e = None ∧ base_irreducible e. (** Given a base redex [e1_redex] somewhere in a term, and another decomposition of the same term into [fill K' e1'] such that [e1'] is not a value, then the base redex context is [e1']'s context [K'] filled with another context [K'']. In particular, this implies [e1 = fill K'' e1_redex] by [fill_inj], i.e., [e1]' contains the base redex.) *) Lemma step_by_val K' K_redex e1' e1_redex e2 : fill K' e1' = fill K_redex e1_redex → to_val e1' = None → base_step e1_redex e2 → ∃ K'', K_redex = comp_ectx K' K''. Proof. rename K' into K. rename K_redex into K'. rename e1' into e1. rename e1_redex into e1'. intros Hfill Hred Hstep; revert K' Hfill. induction K as [|Ki K IH] using rev_ind; simpl; intros K' Hfill; eauto using app_nil_r. destruct K' as [|Ki' K' _] using @rev_ind; simplify_eq/=. { rewrite fill_app in Hstep. apply base_ectxi_step_val in Hstep. apply fill_val in Hstep. by apply not_eq_None_Some in Hstep. } rewrite !fill_app in Hfill; simpl in Hfill. assert (Ki = Ki') as ->. { eapply fill_item_no_val_inj, Hfill. - by apply fill_not_val. - apply fill_not_val. eauto using val_base_stuck. } simplify_eq. destruct (IH K') as [K'' ->]; auto. exists K''. unfold comp_ectx; simpl. rewrite assoc; [done |]. apply _. Qed. (** If [fill K e] takes a base step, then either [e] is a value or [K] is the empty evaluation context. In other words, if [e] is not a value wrapping it in a context does not add new base redex positions. *) Lemma base_ectx_step_val K e e2 : base_step (fill K e) e2 → is_Some (to_val e) ∨ K = empty_ectx. Proof. destruct K as [|Ki K _] using rev_ind; simpl; [by auto|]. rewrite fill_app; simpl. intros ?%base_ectxi_step_val; eauto using fill_val. Qed. (** If a [contextual_step] preserving a surrounding context [K] happens, the reduction happens entirely below the context. *) Lemma contextual_step_ectx_inv K e e' : to_val e = None → contextual_step (fill K e) (fill K e') → contextual_step e e'. Proof. intros ? Hcontextual. inversion Hcontextual; subst. eapply step_by_val in H as (K'' & Heq); [ | done | done]. subst K0. rewrite <-fill_comp in H1. rewrite <-fill_comp in H0. apply fill_inj in H1. apply fill_inj in H0. subst. econstructor; done. Qed. Lemma base_reducible_contextual_step_ectx K e1 e2 : base_reducible e1 → contextual_step (fill K e1) e2 → ∃ e2', e2 = fill K e2' ∧ base_step e1 e2'. Proof. intros (e2''&HhstepK) [K' e1' e2' HKe1 -> Hstep]. edestruct (step_by_val K) as [K'' ?]; eauto using val_base_stuck; simplify_eq/=. rewrite <-fill_comp in HKe1; simplify_eq. exists (fill K'' e2'). rewrite fill_comp; split; [done | ]. apply base_ectx_step_val in HhstepK as [[v ?]|?]; simplify_eq. { apply val_base_stuck in Hstep; simplify_eq. } by rewrite !fill_empty. Qed. Lemma base_reducible_contextual_step e1 e2 : base_reducible e1 → contextual_step e1 e2 → base_step e1 e2. Proof. intros. edestruct (base_reducible_contextual_step_ectx empty_ectx) as (?&?&?); rewrite ?fill_empty; eauto. by simplify_eq; rewrite fill_empty. Qed. (** *** Reducibility *) Definition reducible (e : expr) := ∃ e', contextual_step e e'. Definition irreducible (e : expr) := ∀ e', ¬contextual_step e e'. Definition stuck (e : expr) := to_val e = None ∧ irreducible e. Definition not_stuck (e : expr) := is_Some (to_val e) ∨ reducible e. Lemma base_step_not_stuck e e' : base_step e e' → not_stuck e. Proof. unfold not_stuck, reducible; simpl. eauto 10 using base_contextual_step. Qed. Lemma val_stuck e e' : contextual_step e e' → to_val e = None. Proof. intros [??? -> -> ?%val_base_stuck]. apply eq_None_not_Some. by intros ?%fill_val%eq_None_not_Some. Qed. Lemma not_reducible e : ¬reducible e ↔ irreducible e. Proof. unfold reducible, irreducible. naive_solver. Qed. Lemma reducible_not_val e : reducible e → to_val e = None. Proof. intros (?&?). eauto using val_stuck. Qed. Lemma val_irreducible e : is_Some (to_val e) → irreducible e. Proof. intros [??] ? ?%val_stuck. by destruct (to_val e). Qed. Lemma irreducible_fill K e : irreducible (fill K e) → irreducible e. Proof. intros Hirred e' Hstep. eapply Hirred. by apply fill_contextual_step. Qed. Lemma base_reducible_reducible e : base_reducible e → reducible e. Proof. intros (e' & Hhead). exists e'. by apply base_contextual_step. Qed. (* we derive a few lemmas about contextual steps *) Lemma contextual_step_app_l e1 e1' e2: is_val e2 → contextual_step e1 e1' → contextual_step (App e1 e2) (App e1' e2). Proof. intros [v <-%of_to_val]%is_val_spec Hcontextual. by eapply (fill_contextual_step [AppLCtx _]). Qed. Lemma contextual_step_app_r e1 e2 e2': contextual_step e2 e2' → contextual_step (App e1 e2) (App e1 e2'). Proof. intros Hcontextual. by eapply (fill_contextual_step [AppRCtx e1]). Qed. Lemma contextual_step_tapp e e': contextual_step e e' → contextual_step (TApp e) (TApp e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [TAppCtx]). Qed. Lemma contextual_step_pack e e': contextual_step e e' → contextual_step (Pack e) (Pack e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [PackCtx]). Qed. Lemma contextual_step_unpack x e e' e2: contextual_step e e' → contextual_step (Unpack x e e2) (Unpack x e' e2). Proof. intros Hcontextual. by eapply (fill_contextual_step [UnpackCtx x e2]). Qed. Lemma contextual_step_unop op e e': contextual_step e e' → contextual_step (UnOp op e) (UnOp op e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [UnOpCtx op]). Qed. Lemma contextual_step_binop_l op e1 e1' e2: is_val e2 → contextual_step e1 e1' → contextual_step (BinOp op e1 e2) (BinOp op e1' e2). Proof. intros [v <-%of_to_val]%is_val_spec Hcontextual. by eapply (fill_contextual_step [BinOpLCtx op v]). Qed. Lemma contextual_step_binop_r op e1 e2 e2': contextual_step e2 e2' → contextual_step (BinOp op e1 e2) (BinOp op e1 e2'). Proof. intros Hcontextual. by eapply (fill_contextual_step [BinOpRCtx op e1]). Qed. Lemma contextual_step_if e e' e1 e2: contextual_step e e' → contextual_step (If e e1 e2) (If e' e1 e2). Proof. intros Hcontextual. by eapply (fill_contextual_step [IfCtx e1 e2]). Qed. Lemma contextual_step_pair_l e1 e1' e2: is_val e2 → contextual_step e1 e1' → contextual_step (Pair e1 e2) (Pair e1' e2). Proof. intros [v <-%of_to_val]%is_val_spec Hcontextual. by eapply (fill_contextual_step [PairLCtx v]). Qed. Lemma contextual_step_pair_r e1 e2 e2': contextual_step e2 e2' → contextual_step (Pair e1 e2) (Pair e1 e2'). Proof. intros Hcontextual. by eapply (fill_contextual_step [PairRCtx e1]). Qed. Lemma contextual_step_fst e e': contextual_step e e' → contextual_step (Fst e) (Fst e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [FstCtx]). Qed. Lemma contextual_step_snd e e': contextual_step e e' → contextual_step (Snd e) (Snd e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [SndCtx]). Qed. Lemma contextual_step_injl e e': contextual_step e e' → contextual_step (InjL e) (InjL e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [InjLCtx]). Qed. Lemma contextual_step_injr e e': contextual_step e e' → contextual_step (InjR e) (InjR e'). Proof. intros Hcontextual. by eapply (fill_contextual_step [InjRCtx]). Qed. Lemma contextual_step_case e e' e1 e2: contextual_step e e' → contextual_step (Case e e1 e2) (Case e' e1 e2). Proof. intros Hcontextual. by eapply (fill_contextual_step [CaseCtx e1 e2]). Qed. Lemma contextual_step_roll e e': contextual_step e e' → contextual_step (Roll e) (Roll e'). Proof. by apply (fill_contextual_step [RollCtx]). Qed. Lemma contextual_step_unroll e e': contextual_step e e' → contextual_step (Unroll e) (Unroll e'). Proof. by apply (fill_contextual_step [UnrollCtx]). Qed. #[export] Hint Resolve contextual_step_app_l contextual_step_app_r contextual_step_binop_l contextual_step_binop_r contextual_step_case contextual_step_fst contextual_step_if contextual_step_injl contextual_step_injr contextual_step_pack contextual_step_pair_l contextual_step_pair_r contextual_step_snd contextual_step_tapp contextual_step_tapp contextual_step_unop contextual_step_unpack contextual_step_roll contextual_step_unroll : core.