From stdpp Require Import prelude. From iris Require Import prelude. From semantics.lib Require Import facts maps. From semantics.ts.systemf_mu Require Import lang. Fixpoint subst_map (xs : gmap string expr) (e : expr) : expr := match e with | Lit l => Lit l | Var y => match xs !! y with Some es => es | _ => Var y end | App e1 e2 => App (subst_map xs e1) (subst_map xs e2) | Lam x e => Lam x (subst_map (binder_delete x xs) e) | UnOp op e => UnOp op (subst_map xs e) | BinOp op e1 e2 => BinOp op (subst_map xs e1) (subst_map xs e2) | If e0 e1 e2 => If (subst_map xs e0) (subst_map xs e1) (subst_map xs e2) | TApp e => TApp (subst_map xs e) | TLam e => TLam (subst_map xs e) | Pack e => Pack (subst_map xs e) | Unpack x e1 e2 => Unpack x (subst_map xs e1) (subst_map (binder_delete x xs) e2) | Pair e1 e2 => Pair (subst_map xs e1) (subst_map xs e2) | Fst e => Fst (subst_map xs e) | Snd e => Snd (subst_map xs e) | InjL e => InjL (subst_map xs e) | InjR e => InjR (subst_map xs e) | Case e e1 e2 => Case (subst_map xs e) (subst_map xs e1) (subst_map xs e2) | Roll e => Roll (subst_map xs e) | Unroll e => Unroll (subst_map xs e) end. Lemma subst_map_empty e : subst_map ∅ e = e. Proof. induction e; simpl; f_equal; eauto. all: destruct x; simpl; [done | by rewrite !delete_empty..]. Qed. Lemma subst_map_is_closed X e xs : is_closed X e → (∀ x : string, x ∈ dom xs → x ∉ X) → subst_map xs e = e. Proof. intros Hclosed Hd. induction e in xs, X, Hd, Hclosed |-*; simpl in *;try done. all: repeat match goal with | H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ] end. { (* Var *) apply bool_decide_spec in Hclosed. assert (xs !! x = None) as ->; last done. destruct (xs !! x) as [s | ] eqn:Helem; last done. exfalso; eapply Hd; last apply Hclosed. apply elem_of_dom; eauto. } { (* lambdas *) erewrite IHe; [done | done |]. intros y. destruct x as [ | x]; first apply Hd. simpl. rewrite dom_delete elem_of_difference not_elem_of_singleton. intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done. } 8: { (* Unpack *) erewrite IHe1; [ | done | done]. erewrite IHe2; [ done | done | ]. intros y. destruct x as [ | x]; first apply Hd. simpl. rewrite dom_delete elem_of_difference not_elem_of_singleton. intros [Hnx%Hd Hneq]. rewrite elem_of_cons. intros [? | ?]; done. } (* all other cases *) all: repeat match goal with | H : ∀ _ _, _ → _ → subst_map _ _ = _ |- _ => erewrite H; clear H end; done. Qed. Lemma subst_map_subst map x (e e' : expr) : is_closed [] e' → subst_map map (subst x e' e) = subst_map (<[x:=e']>map) e. Proof. intros He'. revert x map; induction e; intros xx map; simpl; try (f_equal; eauto). - case_decide. + simplify_eq/=. rewrite lookup_insert. rewrite (subst_map_is_closed []); [done | apply He' | ]. intros ? ?. apply not_elem_of_nil. + rewrite lookup_insert_ne; done. - destruct x; simpl; first done. + case_decide. * simplify_eq/=. by rewrite delete_insert_delete. * rewrite delete_insert_ne; last by congruence. done. - destruct x; simpl; first done. + case_decide. * simplify_eq/=. by rewrite delete_insert_delete. * rewrite delete_insert_ne; last by congruence. done. Qed. Definition subst_is_closed (X : list string) (map : gmap string expr) := ∀ x e, map !! x = Some e → closed X e. Lemma subst_is_closed_subseteq X map1 map2 : map1 ⊆ map2 → subst_is_closed X map2 → subst_is_closed X map1. Proof. intros Hsub Hclosed2 x e Hl. eapply Hclosed2, map_subseteq_spec; done. Qed. Lemma subst_subst_map x es map e : subst_is_closed [] map → subst x es (subst_map (delete x map) e) = subst_map (<[x:=es]>map) e. Proof. revert map es x; induction e; intros map v0 xx Hclosed; simpl; try (f_equal; eauto). - destruct (decide (xx=x)) as [->|Hne]. + rewrite lookup_delete // lookup_insert //. simpl. rewrite decide_True //. + rewrite lookup_delete_ne // lookup_insert_ne //. destruct (_ !! x) as [rr|] eqn:Helem. * apply Hclosed in Helem. by apply subst_is_closed_nil. * simpl. rewrite decide_False //. - destruct x; simpl; first by auto. case_decide. + simplify_eq. rewrite delete_idemp delete_insert_delete. done. + rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe. eapply subst_is_closed_subseteq; last done. apply map_delete_subseteq. - destruct x; simpl; first by auto. case_decide. + simplify_eq. rewrite delete_idemp delete_insert_delete. done. + rewrite delete_insert_ne //; last congruence. rewrite delete_commute. apply IHe2. eapply subst_is_closed_subseteq; last done. apply map_delete_subseteq. Qed. Lemma subst'_subst_map b (es : expr) map e : subst_is_closed [] map → subst' b es (subst_map (binder_delete b map) e) = subst_map (binder_insert b es map) e. Proof. destruct b; first done. apply subst_subst_map. Qed. Lemma closed_subst_weaken e map X Y : subst_is_closed [] map → (∀ x, x ∈ X → x ∉ dom map → x ∈ Y) → closed X e → closed Y (subst_map map e). Proof. induction e in X, Y, map |-*; rewrite /closed; simpl; intros Hmclosed Hsub Hcl; first done. all: repeat match goal with | H : Is_true (_ && _) |- _ => apply andb_True in H as [ ? ? ] end. { (* vars *) destruct (map !! x) as [es | ] eqn:Heq. + apply is_closed_weaken_nil. by eapply Hmclosed. + apply bool_decide_pack. apply Hsub; first by eapply bool_decide_unpack. by apply not_elem_of_dom. } { (* lambdas *) eapply IHe; last done. + eapply subst_is_closed_subseteq; last done. destruct x; first done. apply map_delete_subseteq. + intros y. destruct x as [ | x]; first by apply Hsub. rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left. destruct (decide (y = x)) as [ -> | Hneq]; first by left. right. eapply Hsub; first done. set_solver. } 8: { (* unpack *) apply andb_True; split; first naive_solver. eapply IHe2; last done. + eapply subst_is_closed_subseteq; last done. destruct x; first done. apply map_delete_subseteq. + intros y. destruct x as [ | x]; first by apply Hsub. rewrite !elem_of_cons. intros [-> | Hy] Hn; first by left. destruct (decide (y = x)) as [ -> | Hneq]; first by left. right. eapply Hsub; first done. set_solver. } (* all other cases *) all: repeat match goal with | |- Is_true (_ && _) => apply andb_True; split end. all: naive_solver. Qed. Lemma subst_is_closed_weaken X1 X2 θ : subst_is_closed X1 θ → X1 ⊆ X2 → subst_is_closed X2 θ. Proof. intros Hcl Hincl x e Hlook. eapply is_closed_weaken; last done. by eapply Hcl. Qed. Lemma subst_is_closed_weaken_nil X θ : subst_is_closed [] θ → subst_is_closed X θ. Proof. intros; eapply subst_is_closed_weaken; first done. apply list_subseteq_nil. Qed. Lemma subst_is_closed_insert X e f θ : is_closed X e → subst_is_closed X (delete f θ) → subst_is_closed X (<[f := e]> θ). Proof. intros Hcl Hcl' x e'. destruct (decide (x = f)) as [<- | ?]. - rewrite lookup_insert. intros [= <-]. done. - rewrite lookup_insert_ne; last done. intros Hlook. eapply Hcl'. rewrite lookup_delete_ne; done. Qed. (* NOTE: this is a simplified version of the tactic in tactics.v which suffice for this proof *) Ltac simplify_closed := repeat match goal with | |- closed _ _ => unfold closed; simpl | |- Is_true (_ && _) => simpl; rewrite !andb_True; split_and! | H : closed _ _ |- _ => unfold closed in H; simpl in H | H: Is_true (_ && _) |- _ => simpl in H; apply andb_True in H | H : _ ∧ _ |- _ => destruct H end. Lemma is_closed_subst_map X θ e : subst_is_closed X θ → closed (X ++ elements (dom θ)) e → closed X (subst_map θ e). Proof. induction e in X, θ |-*; eauto. all: try solve [intros; simplify_closed; naive_solver]. - unfold subst_map. destruct (θ !! x) eqn:Heq. + intros Hcl _. eapply Hcl; done. + intros _ Hcl. apply closed_is_closed in Hcl. apply bool_decide_eq_true in Hcl. apply elem_of_app in Hcl. destruct Hcl as [ | H]. * apply closed_is_closed. by apply bool_decide_eq_true. * apply elem_of_elements in H. by apply not_elem_of_dom in Heq. - intros. simplify_closed. eapply IHe. + destruct x as [ | x]; simpl; first done. intros y e'. rewrite lookup_delete_Some. intros (? & Hlook%H). eapply is_closed_weaken; first done. by apply list_subseteq_cons_r. + eapply is_closed_weaken; first done. simpl. destruct x as [ | x]; first done; simpl. apply list_subseteq_cons_l. apply stdpp.sets.elem_of_subseteq. intros y; simpl. rewrite elem_of_cons !elem_of_app. intros [ | Helem]; first naive_solver. destruct (decide (x = y)) as [<- | Hneq]; first naive_solver. right. right. apply elem_of_elements. rewrite dom_delete elem_of_difference elem_of_singleton. apply elem_of_elements in Helem; done. - intros. simplify_closed. { naive_solver. } (* same proof as for lambda *) eapply IHe2. + destruct x as [ | x]; simpl; first done. intros y e'. rewrite lookup_delete_Some. intros (? & Hlook%H). eapply is_closed_weaken; first done. by apply list_subseteq_cons_r. + eapply is_closed_weaken; first done. simpl. destruct x as [ | x]; first done; simpl. apply list_subseteq_cons_l. apply stdpp.sets.elem_of_subseteq. intros y; simpl. rewrite elem_of_cons !elem_of_app. intros [ | Helem]; first naive_solver. destruct (decide (x = y)) as [<- | Hneq]; first naive_solver. right. right. apply elem_of_elements. rewrite dom_delete elem_of_difference elem_of_singleton. apply elem_of_elements in Helem; done. Qed.