From stdpp Require Import base relations. From iris Require Import prelude. From semantics.lib Require Import maps. From semantics.ts.systemf_mu_state Require Import lang notation. From Autosubst Require Export Autosubst. (** ** Syntactic typing *) (** We use De Bruijn indices with the help of the Autosubst library. *) Inductive type : Type := (** [var] is the type of variables of Autosubst -- it unfolds to [nat] *) | TVar : var → type | Int | Bool | Unit (** The [{bind 1 of type}] tells Autosubst to put a De Bruijn binder here *) | TForall : {bind 1 of type} → type | TExists : {bind 1 of type} → type | Fun (A B : type) | Prod (A B : type) | Sum (A B : type) | TMu : {bind 1 of type} → type | Ref (A : type) . (** Autosubst instances. This lets Autosubst do its magic and derive all the substitution functions, etc. *) #[export] Instance Ids_type : Ids type. derive. Defined. #[export] Instance Rename_type : Rename type. derive. Defined. #[export] Instance Subst_type : Subst type. derive. Defined. #[export] Instance SubstLemmas_typer : SubstLemmas type. derive. Qed. Definition typing_context := gmap string type. Definition heap_context := gmap loc type. Implicit Types (Γ : typing_context) (Σ : heap_context) (v : val) (e : expr) (A B : type) . Declare Scope FType_scope. Delimit Scope FType_scope with ty. Bind Scope FType_scope with type. Notation "# x" := (TVar x) : FType_scope. Infix "→" := Fun : FType_scope. Notation "(→)" := Fun (only parsing) : FType_scope. Notation "∀: τ" := (TForall τ%ty) (at level 100, τ at level 200) : FType_scope. Notation "∃: τ" := (TExists τ%ty) (at level 100, τ at level 200) : FType_scope. Infix "×" := Prod (at level 70) : FType_scope. Notation "(×)" := Prod (only parsing) : FType_scope. Infix "+" := Sum : FType_scope. Notation "(+)" := Sum (only parsing) : FType_scope. Notation "μ: A" := (TMu A%ty) (at level 100, A at level 200) : FType_scope. (** Shift all the indices in the context by one, used when inserting a new type interpretation in Δ. *) (* [<$>] is notation for the [fmap] operation that maps the substitution over the whole map. *) (* [ren] is Autosubst's renaming operation -- it renames all type variables according to the given function, in this case [(+1)] to shift the variables up by 1. *) Notation "⤉ Γ" := (Autosubst_Classes.subst (ren (+1)) <$> Γ) (at level 10, format "⤉ Γ"). (** [type_wf n A] states that a type [A] has only free variables up to < [n]. (in other words, all variables occurring free are strictly bounded by [n]). *) Inductive type_wf : nat → type → Prop := | type_wf_TVar m n: m < n → type_wf n (TVar m) | type_wf_Int n: type_wf n Int | type_wf_Bool n : type_wf n Bool | type_wf_Unit n : type_wf n Unit | type_wf_TForall n A : type_wf (S n) A → type_wf n (TForall A) | type_wf_TExists n A : type_wf (S n) A → type_wf n (TExists A) | type_wf_Fun n A B: type_wf n A → type_wf n B → type_wf n (Fun A B) | type_wf_Prod n A B : type_wf n A → type_wf n B → type_wf n (Prod A B) | type_wf_Sum n A B : type_wf n A → type_wf n B → type_wf n (Sum A B) | type_wf_mu n A : type_wf (S n) A → type_wf n (μ: A) | type_wf_ref n A : type_wf n A → type_wf n (Ref A) . #[export] Hint Constructors type_wf : core. Inductive bin_op_typed : bin_op → type → type → type → Prop := | plus_op_typed : bin_op_typed PlusOp Int Int Int | minus_op_typed : bin_op_typed MinusOp Int Int Int | mul_op_typed : bin_op_typed MultOp Int Int Int | lt_op_typed : bin_op_typed LtOp Int Int Bool | le_op_typed : bin_op_typed LeOp Int Int Bool | eq_op_typed : bin_op_typed EqOp Int Int Bool. #[export] Hint Constructors bin_op_typed : core. Inductive un_op_typed : un_op → type → type → Prop := | neg_op_typed : un_op_typed NegOp Bool Bool | minus_un_op_typed : un_op_typed MinusUnOp Int Int. Reserved Notation "'TY' Σ ; n ; Γ ⊢ e : A" (at level 74, e, A at next level). Inductive syn_typed : heap_context → nat → typing_context → expr → type → Prop := | typed_var Σ n Γ x A : Γ !! x = Some A → TY Σ; n; Γ ⊢ (Var x) : A | typed_lam Σ n Γ x e A B : TY Σ; n ; (<[ x := A]> Γ) ⊢ e : B → type_wf n A → TY Σ; n; Γ ⊢ (Lam (BNamed x) e) : (A → B) | typed_lam_anon Σ n Γ e A B : TY Σ; n ; Γ ⊢ e : B → type_wf n A → TY Σ; n; Γ ⊢ (Lam BAnon e) : (A → B) | typed_tlam Σ n Γ e A : (* we need to shift the context up as we descend under a binder *) TY (⤉ Σ); S n; (⤉ Γ) ⊢ e : A → TY Σ; n; Γ ⊢ (Λ, e) : (∀: A) | typed_tapp Σ n Γ A B e : TY Σ; n; Γ ⊢ e : (∀: A) → type_wf n B → (* A.[B/] is the notation for Autosubst's substitution operation that replaces variable 0 by [B] *) TY Σ; n; Γ ⊢ (e <>) : (A.[B/]) | typed_pack Σ n Γ A B e : type_wf n B → type_wf (S n) A → TY Σ; n; Γ ⊢ e : (A.[B/]) → TY Σ; n; Γ ⊢ (pack e) : (∃: A) | typed_unpack Σ n Γ A B e e' x : type_wf n B → (* we should not leak the existential! *) TY Σ; n; Γ ⊢ e : (∃: A) → (* As we descend under a type variable binder for the typing of [e'], we need to shift the indices in [Γ] and [B] up by one. On the other hand, [A] is already defined under this binder, so we need not shift it. *) TY (⤉ Σ); (S n); (<[x := A]>(⤉Γ)) ⊢ e' : (B.[ren (+1)]) → TY Σ; n; Γ ⊢ (unpack e as BNamed x in e') : B | typed_int Σ n Γ z : TY Σ; n; Γ ⊢ (Lit $ LitInt z) : Int | typed_bool Σ n Γ b : TY Σ; n; Γ ⊢ (Lit $ LitBool b) : Bool | typed_unit Σ n Γ : TY Σ; n; Γ ⊢ (Lit $ LitUnit) : Unit | typed_if Σ n Γ e0 e1 e2 A : TY Σ; n; Γ ⊢ e0 : Bool → TY Σ; n; Γ ⊢ e1 : A → TY Σ; n; Γ ⊢ e2 : A → TY Σ; n; Γ ⊢ If e0 e1 e2 : A | typed_app Σ n Γ e1 e2 A B : TY Σ; n; Γ ⊢ e1 : (A → B) → TY Σ; n; Γ ⊢ e2 : A → TY Σ; n; Γ ⊢ (e1 e2)%E : B | typed_binop Σ n Γ e1 e2 op A B C : bin_op_typed op A B C → TY Σ; n; Γ ⊢ e1 : A → TY Σ; n; Γ ⊢ e2 : B → TY Σ; n; Γ ⊢ BinOp op e1 e2 : C | typed_unop Σ n Γ e op A B : un_op_typed op A B → TY Σ; n; Γ ⊢ e : A → TY Σ; n; Γ ⊢ UnOp op e : B | typed_pair Σ n Γ e1 e2 A B : TY Σ; n; Γ ⊢ e1 : A → TY Σ; n; Γ ⊢ e2 : B → TY Σ; n; Γ ⊢ (e1, e2) : A × B | typed_fst Σ n Γ e A B : TY Σ; n; Γ ⊢ e : A × B → TY Σ; n; Γ ⊢ Fst e : A | typed_snd Σ n Γ e A B : TY Σ; n; Γ ⊢ e : A × B → TY Σ; n; Γ ⊢ Snd e : B | typed_injl Σ n Γ e A B : type_wf n B → TY Σ; n; Γ ⊢ e : A → TY Σ; n; Γ ⊢ InjL e : A + B | typed_injr Σ n Γ e A B : type_wf n A → TY Σ; n; Γ ⊢ e : B → TY Σ; n; Γ ⊢ InjR e : A + B | typed_case Σ n Γ e e1 e2 A B C : TY Σ; n; Γ ⊢ e : B + C → TY Σ; n; Γ ⊢ e1 : (B → A) → TY Σ; n; Γ ⊢ e2 : (C → A) → TY Σ; n; Γ ⊢ Case e e1 e2 : A | typed_roll Σ n Γ e A : TY Σ; n; Γ ⊢ e : (A.[(μ: A)/]) → TY Σ; n; Γ ⊢ (roll e) : (μ: A) | typed_unroll Σ n Γ e A : TY Σ; n; Γ ⊢ e : (μ: A) → TY Σ; n; Γ ⊢ (unroll e) : (A.[(μ: A)/]) | typed_loc Σ Δ Γ l A : Σ !! l = Some A → TY Σ; Δ; Γ ⊢ (Lit $ LitLoc l) : (Ref A) | typed_load Σ Δ Γ e A : TY Σ; Δ; Γ ⊢ e : (Ref A) → TY Σ; Δ; Γ ⊢ !e : A | typed_store Σ Δ Γ e1 e2 A : TY Σ; Δ; Γ ⊢ e1 : (Ref A) → TY Σ; Δ; Γ ⊢ e2 : A → TY Σ; Δ; Γ ⊢ (e1 <- e2) : Unit | typed_new Σ Δ Γ e A : TY Σ; Δ; Γ ⊢ e : A → TY Σ; Δ; Γ ⊢ (new e) : Ref A where "'TY' Σ ; n ; Γ ⊢ e : A" := (syn_typed Σ n Γ e%E A%ty). #[export] Hint Constructors syn_typed : core. (** Examples *) Goal TY ∅; 0; ∅ ⊢ (λ: "x", #1 + "x")%E : (Int → Int). Proof. eauto. Qed. (** [∀: #0 → #0] corresponds to [∀ α. α → α] with named binders. *) Goal TY ∅; 0; ∅ ⊢ (Λ, λ: "x", "x")%E : (∀: #0 → #0). Proof. repeat econstructor. Qed. Goal TY ∅; 0; ∅ ⊢ (pack ((λ: "x", "x"), #42)) : ∃: (#0 → #0) × #0. Proof. apply (typed_pack _ _ _ _ Int). - eauto. - repeat econstructor. - (* [asimpl] is Autosubst's tactic for simplifying goals involving type substitutions. *) asimpl. eauto. Qed. Goal TY ∅; 0; ∅ ⊢ (unpack (pack ((λ: "x", "x"), #42)) as "y" in (λ: "x", #1337) ((Fst "y") (Snd "y"))) : Int. Proof. (* if we want to typecheck stuff with existentials, we need a bit more explicit proofs. Letting eauto try to instantiate the evars becomes too expensive. *) apply (typed_unpack _ _ _ ((#0 → #0) × #0)%ty). - done. - apply (typed_pack _ _ _ _ Int); asimpl; eauto. repeat econstructor. - eapply (typed_app _ _ _ _ _ (#0)%ty); eauto 10. Qed. (** fails: we are not allowed to leak the existential *) Goal TY ∅; 0; ∅ ⊢ (unpack (pack ((λ: "x", "x"), #42)) as "y" in (Fst "y") (Snd "y")) : #0. Proof. apply (typed_unpack _ _ _ ((#0 → #0) × #0)%ty). Abort. (* derived typing rule for match *) Lemma typed_match Σ n Γ e e1 e2 x1 x2 A B C : type_wf n B → type_wf n C → TY Σ; n; Γ ⊢ e : B + C → TY Σ; n; <[x1 := B]> Γ ⊢ e1 : A → TY Σ; n; <[x2 := C]> Γ ⊢ e2 : A → TY Σ; n; Γ ⊢ match: e with InjL (BNamed x1) => e1 | InjR (BNamed x2) => e2 end : A. Proof. eauto. Qed. Lemma syn_typed_closed Σ n Γ e A X : TY Σ; n; Γ ⊢ e : A → (∀ x, x ∈ dom Γ → x ∈ X) → is_closed X e. Proof. induction 1 as [ | ???????? IH | | Σ n Γ e A H IH | | | Σ n Γ A B e e' x Hwf H1 IH1 H2 IH2 | | | | | | | | | | | | | | | | | | | ] in X |-*; simpl; intros Hx; try done. { (* var *) apply bool_decide_pack, Hx. apply elem_of_dom; eauto. } { (* lam *) apply IH. intros y. rewrite elem_of_dom lookup_insert_is_Some. intros [<- | [? Hy]]; first by apply elem_of_cons; eauto. apply elem_of_cons. right. eapply Hx. by apply elem_of_dom. } { (* anon lam *) naive_solver. } { (* tlam *) eapply IH. intros x Hel. apply Hx. by rewrite dom_fmap in Hel. } 3: { (* unpack *) apply andb_True; split. - apply IH1. apply Hx. - apply IH2. intros y. rewrite elem_of_dom lookup_insert_is_Some. intros [<- | [? Hy]]; first by apply elem_of_cons; eauto. apply elem_of_cons. right. eapply Hx. apply elem_of_dom. revert Hy. rewrite lookup_fmap fmap_is_Some. done. } (* everything else *) all: repeat match goal with | |- Is_true (_ && _) => apply andb_True; split end. all: try naive_solver. Qed. (** *** Lemmas about [type_wf] *) Lemma type_wf_mono n m A: type_wf n A → n ≤ m → type_wf m A. Proof. induction 1 in m |-*; eauto with lia. Qed. Lemma type_wf_rename n A δ: type_wf n A → (∀ i j, i < j → δ i < δ j) → type_wf (δ n) (rename δ A). Proof. induction 1 in δ |-*; intros Hmon; simpl; eauto. all: econstructor; eapply type_wf_mono; first eapply IHtype_wf; last done. all: intros i j Hlt; destruct i, j; simpl; try lia. all: rewrite -Nat.succ_lt_mono; eapply Hmon; lia. Qed. (** [A.[σ]], i.e. [A] with the substitution [σ] applied to it, is well-formed under [m] if [A] is well-formed under [n] and all the things we substitute up to [n] are well-formed under [m]. *) Lemma type_wf_subst n m A σ: type_wf n A → (∀ x, x < n → type_wf m (σ x)) → type_wf m A.[σ]. Proof. induction 1 in m, σ |-*; intros Hsub; simpl; eauto. + econstructor; eapply IHtype_wf. intros [|x]; rewrite /up //=. - econstructor. lia. - intros Hlt % Nat.succ_lt_mono. eapply type_wf_rename; eauto. intros i j Hlt'; simpl; lia. + econstructor; eapply IHtype_wf. intros [|x]; rewrite /up //=. - econstructor. lia. - intros Hlt % Nat.succ_lt_mono. eapply type_wf_rename; eauto. intros i j Hlt'; simpl; lia. + econstructor. eapply IHtype_wf. intros [|x]; rewrite /up //=. - econstructor. lia. - intros Hlt % Nat.succ_lt_mono. eapply type_wf_rename; eauto. intros ???. simpl; lia. Qed. Fixpoint free_vars A : nat → Prop := match A with | TVar n => λ m, m = n | Int => λ _, False | Bool => λ _, False | Unit => λ _, False | Fun A B => λ n, free_vars A n ∨ free_vars B n | Prod A B => λ n, free_vars A n ∨ free_vars B n | Sum A B => λ n, free_vars A n ∨ free_vars B n | TForall A => λ n, free_vars A (S n) | TExists A => λ n, free_vars A (S n) | TMu A => λ n, free_vars A (S n) | Ref A => λ n, free_vars A n end. Definition bounded n A := (∀ x, free_vars A x → x < n). Lemma type_wf_bounded n A: type_wf n A ↔ bounded n A. Proof. rewrite /bounded; split. - induction 1; simpl; try naive_solver. + intros x Hfree % IHtype_wf. lia. + intros x Hfree % IHtype_wf. lia. + intros x Hfree % IHtype_wf. lia. - induction A in n |-*; simpl; eauto. + intros Hsub. econstructor. eapply IHA. intros ??. destruct x as [|x]; first lia. eapply Hsub in H. lia. + intros Hsub. econstructor. eapply IHA. intros ??. destruct x as [|x]; first lia. eapply Hsub in H. lia. + intros Hsub. econstructor; eauto. + intros Hsub. econstructor; eauto. + intros Hsub. econstructor; eauto. + intros Hsub. econstructor. eapply IHA. intros ??. destruct x as [|x]; first lia. eapply Hsub in H. lia. Qed. Lemma free_vars_rename A x δ: free_vars A x → free_vars (rename δ A) (δ x). Proof. induction A in x, δ |-*; simpl; try naive_solver. - intros Hf. apply (IHA (S x) (upren δ) Hf). - intros Hf. apply (IHA (S x) (upren δ) Hf). - intros Hf. apply (IHA (S x) (upren δ) Hf). Qed. Lemma free_vars_subst x n A σ : bounded n A.[σ] → free_vars A x → bounded n (σ x). Proof. induction A in n, σ, x |-*; simpl; try naive_solver. - rewrite -type_wf_bounded. inversion 1; subst. revert H2; clear H. rewrite type_wf_bounded. intros Hbd Hfree. eapply IHA in Hbd; last done. revert Hbd. rewrite /up //=. intros Hbd y Hf. enough (S y < S n) by lia. eapply Hbd. simpl. by eapply free_vars_rename. - rewrite -type_wf_bounded. inversion 1; subst. revert H2; clear H. rewrite type_wf_bounded. intros Hbd Hfree. eapply IHA in Hbd; last done. revert Hbd. rewrite /up //=. intros Hbd y Hf. enough (S y < S n) by lia. eapply Hbd. simpl. by eapply free_vars_rename. - rewrite -!type_wf_bounded. inversion 1; subst. revert H3 H4. rewrite !type_wf_bounded. naive_solver. - rewrite -!type_wf_bounded. inversion 1; subst. revert H3 H4. rewrite !type_wf_bounded. naive_solver. - rewrite -!type_wf_bounded. inversion 1; subst. revert H3 H4. rewrite !type_wf_bounded. naive_solver. - rewrite -type_wf_bounded. inversion 1; subst. revert H2; clear H. rewrite type_wf_bounded. intros Hbd Hfree. eapply IHA in Hbd; last done. revert Hbd. rewrite /up //=. intros Hbd y Hf. enough (S y < S n) by lia. eapply Hbd. simpl. by eapply free_vars_rename. Qed. Lemma type_wf_rec_type n A: type_wf n A.[(μ: A)%ty/] → type_wf (S n) A. Proof. rewrite !type_wf_bounded. intros Hbound x Hfree. eapply free_vars_subst in Hbound; last done. destruct x as [|x]; first lia; simpl in Hbound. eapply type_wf_bounded in Hbound. inversion Hbound; subst; lia. Qed. Lemma type_wf_single_subst n A B: type_wf n B → type_wf (S n) A → type_wf n A.[B/]. Proof. intros HB HA. eapply type_wf_subst; first done. intros [|x]; simpl; eauto. intros ?; econstructor. lia. Qed. (** We lift [type_wf] to well-formedness of contexts *) Definition ctx_wf n Γ := (∀ x A, Γ !! x = Some A → type_wf n A). Lemma ctx_wf_empty n : ctx_wf n ∅. Proof. rewrite /ctx_wf. set_solver. Qed. Lemma ctx_wf_insert n x Γ A: ctx_wf n Γ → type_wf n A → ctx_wf n (<[x := A]> Γ). Proof. intros H1 H2 y B. rewrite lookup_insert_Some. naive_solver. Qed. Lemma ctx_wf_up n Γ: ctx_wf n Γ → ctx_wf (S n) (⤉Γ). Proof. intros Hwf x A; rewrite lookup_fmap. intros (B & Hlook & ->) % fmap_Some. asimpl. eapply type_wf_subst; first eauto. intros y Hlt. simpl. econstructor. lia. Qed. Definition heap_ctx_wf Δ (Σ: heap_context) := (∀ x A, Σ !! x = Some A → type_wf Δ A). Lemma heap_ctx_wf_empty n : heap_ctx_wf n ∅. Proof. rewrite /heap_ctx_wf. set_solver. Qed. Lemma heap_ctx_wf_insert n l Σ A: heap_ctx_wf n Σ → type_wf n A → heap_ctx_wf n (<[l := A]> Σ). Proof. intros H1 H2 y B. rewrite lookup_insert_Some. naive_solver. Qed. Lemma heap_ctx_wf_up n Σ: heap_ctx_wf n Σ → heap_ctx_wf (S n) (⤉Σ). Proof. intros Hwf x A; rewrite lookup_fmap. intros (B & Hlook & ->) % fmap_Some. asimpl. eapply type_wf_subst; first eauto. intros y Hlt. simpl. econstructor. lia. Qed. #[global] Hint Resolve ctx_wf_empty ctx_wf_insert ctx_wf_up heap_ctx_wf_up heap_ctx_wf_empty heap_ctx_wf_empty : core. (** Well-typed terms at [A] under a well-formed context have well-formed types [A].*) Lemma syn_typed_wf Σ n Γ e A: ctx_wf n Γ → heap_ctx_wf n Σ → TY Σ; n; Γ ⊢ e : A → type_wf n A. Proof. intros Hwf Hhwf; induction 1 as [ | Σ n Γ x e A B Hty IH Hwfty | | Σ n Γ e A Hty IH | Σ n Γ A B e Hty IH Hwfty | Σ n Γ A B e Hwfty Hty IH| | | | | | Σ n Γ e1 e2 A B HtyA IHA HtyB IHB | Σ n Γ e1 e2 op A B C Hop HtyA IHA HtyB IHB | Σ n Γ e op A B Hop H IH | Σ n Γ e1 e2 A B HtyA IHA HtyB IHB | Σ n Γ e A B Hty IH | Σ n Γ e A B Hty IH | Σ n Γ e A B Hwfty Hty IH | Σ n Γ e A B Hwfty Hty IH| Σ n Γ e e1 e2 A B C Htye IHe Htye1 IHe1 Htye2 IHe2 | Σ n Γ e A Hty IH | Σ n Γ e A Hty IH | Σ n Γ l A Hlook| Σ n Γ e A Hty IH | Σ n Γ e1 e2 A Hty1 IH1 Hty2 IH2 | Σ n Γ e A Hty IH]; eauto. - eapply type_wf_single_subst; first done. specialize (IH Hwf Hhwf) as Hwf'. by inversion Hwf'. - specialize (IHA Hwf Hhwf) as Hwf'. by inversion Hwf'; subst. - inversion Hop; subst; eauto. - inversion Hop; subst; eauto. - specialize (IH Hwf Hhwf) as Hwf'. by inversion Hwf'; subst. - specialize (IH Hwf Hhwf) as Hwf'. by inversion Hwf'; subst. - specialize (IHe1 Hwf Hhwf) as Hwf''. by inversion Hwf''; subst. - specialize (IH Hwf Hhwf) as Hwf'%type_wf_rec_type. by econstructor. - eapply type_wf_single_subst; first by apply IH. specialize (IH Hwf Hhwf) as Hwf'. by inversion Hwf'. - specialize (IH Hwf Hhwf) as Hwf'. by inversion Hwf'. Qed. Lemma renaming_ctx_inclusion Γ Δ : Γ ⊆ Δ → ⤉Γ ⊆ ⤉Δ. Proof. eapply map_fmap_mono. Qed. Lemma renaming_heap_ctx_inclusion Σ Σ' : Σ ⊆ Σ' → ⤉Σ ⊆ ⤉Σ'. Proof. eapply map_fmap_mono. Qed. Lemma typed_weakening n m Γ Δ e A Σ Σ' : TY Σ; n; Γ ⊢ e : A → Γ ⊆ Δ → Σ ⊆ Σ' → n ≤ m → TY Σ'; m; Δ ⊢ e : A. Proof. induction 1 as [| Σ n Γ x e A B Htyp IH | | Σ n Γ e A Htyp IH | | | Σ n Γ A B e e' x Hwf H1 IH1 H2 IH2 | | | | | | | | | | | | | | | | Σ n Γ l A Hlook | | | ] in Σ', Δ, m |-*; intros Hsub1 Hsub2 Hle; eauto using type_wf_mono. - (* var *) econstructor. by eapply lookup_weaken. - (* lam *) econstructor; last by eapply type_wf_mono. eapply IH; eauto. by eapply insert_mono. - (* tlam *) econstructor. eapply IH; last by lia. + by eapply renaming_ctx_inclusion. + by eapply renaming_heap_ctx_inclusion. - (* pack *) econstructor; last naive_solver. all: (eapply type_wf_mono; [ done | lia]). - (* unpack *) econstructor. + eapply type_wf_mono; done. + eapply IH1; done. + eapply IH2; last lia. * apply insert_mono. by apply renaming_ctx_inclusion. * by apply renaming_heap_ctx_inclusion. - (* loc *) econstructor; by eapply lookup_weaken. Qed. Lemma type_wf_subst_dom σ τ n A: type_wf n A → (∀ m, m < n → σ m = τ m) → A.[σ] = A.[τ]. Proof. induction 1 in σ, τ |-*; simpl; eauto. - (* tforall *) intros Heq; asimpl. f_equal. eapply IHtype_wf; intros [|m]; rewrite /up; simpl; first done. intros Hlt. f_equal. eapply Heq. lia. - (* texists *) intros Heq; asimpl. f_equal. eapply IHtype_wf. intros [ | m]; rewrite /up; simpl; first done. intros Hlt. f_equal. apply Heq. lia. - (* fun *) intros ?. f_equal; eauto. - (* prod *) intros ?. f_equal; eauto. - (* sum *) intros ?. f_equal; eauto. - (* rec *) intros Heq; asimpl. f_equal. eapply IHtype_wf; intros [|m]; rewrite /up; simpl; first done. intros Hlt. f_equal. eapply Heq. lia. - (* ref *) intros ?. f_equal. eapply IHtype_wf. done. Qed. Lemma type_wf_closed A σ: type_wf 0 A → A.[σ] = A. Proof. intros Hwf; erewrite (type_wf_subst_dom _ (ids) 0). - by asimpl. - done. - intros ??; lia. Qed. Lemma heap_ctx_closed Σ σ: heap_ctx_wf 0 Σ → fmap (subst σ) Σ = Σ. Proof. intros Hwf. eapply stdpp.fin_maps.map_eq; intros l. rewrite lookup_fmap. destruct lookup as [A|]eqn: H; last done; simpl. f_equal. eapply type_wf_closed. by eapply Hwf. Qed. (** Typing inversion lemmas *) Lemma var_inversion Σ Γ n (x: string) A: TY Σ; n; Γ ⊢ x : A → Γ !! x = Some A. Proof. inversion 1; subst; auto. Qed. Lemma lam_inversion Σ n Γ (x: string) e C: TY Σ; n; Γ ⊢ (λ: x, e) : C → ∃ A B, C = (A → B)%ty ∧ type_wf n A ∧ TY Σ; n; <[x:=A]> Γ ⊢ e : B. Proof. inversion 1; subst; eauto 10. Qed. Lemma lam_anon_inversion Σ n Γ e C: TY Σ; n; Γ ⊢ (λ: <>, e) : C → ∃ A B, C = (A → B)%ty ∧ type_wf n A ∧ TY Σ; n; Γ ⊢ e : B. Proof. inversion 1; subst; eauto 10. Qed. Lemma app_inversion Σ n Γ e1 e2 B: TY Σ; n; Γ ⊢ e1 e2 : B → ∃ A, TY Σ; n; Γ ⊢ e1 : (A → B) ∧ TY Σ; n; Γ ⊢ e2 : A. Proof. inversion 1; subst; eauto. Qed. Lemma if_inversion Σ n Γ e0 e1 e2 B: TY Σ; n; Γ ⊢ If e0 e1 e2 : B → TY Σ; n; Γ ⊢ e0 : Bool ∧ TY Σ; n; Γ ⊢ e1 : B ∧ TY Σ; n; Γ ⊢ e2 : B. Proof. inversion 1; subst; eauto. Qed. Lemma binop_inversion Σ n Γ op e1 e2 B: TY Σ; n; Γ ⊢ BinOp op e1 e2 : B → ∃ A1 A2, bin_op_typed op A1 A2 B ∧ TY Σ; n; Γ ⊢ e1 : A1 ∧ TY Σ; n; Γ ⊢ e2 : A2. Proof. inversion 1; subst; eauto. Qed. Lemma unop_inversion Σ n Γ op e B: TY Σ; n; Γ ⊢ UnOp op e : B → ∃ A, un_op_typed op A B ∧ TY Σ; n; Γ ⊢ e : A. Proof. inversion 1; subst; eauto. Qed. Lemma type_app_inversion Σ n Γ e B: TY Σ; n; Γ ⊢ e <> : B → ∃ A C, B = A.[C/] ∧ type_wf n C ∧ TY Σ; n; Γ ⊢ e : (∀: A). Proof. inversion 1; subst; eauto. Qed. Lemma type_lam_inversion Σ n Γ e B: TY Σ; n; Γ ⊢ (Λ,e) : B → ∃ A, B = (∀: A)%ty ∧ TY ⤉Σ; (S n); ⤉Γ ⊢ e : A. Proof. inversion 1; subst; eauto. Qed. Lemma type_pack_inversion Σ n Γ e B : TY Σ; n; Γ ⊢ (pack e) : B → ∃ A C, B = (∃: A)%ty ∧ TY Σ; n; Γ ⊢ e : (A.[C/])%ty ∧ type_wf n C ∧ type_wf (S n) A. Proof. inversion 1; subst; eauto 10. Qed. Lemma type_unpack_inversion Σ n Γ e e' x B : TY Σ; n; Γ ⊢ (unpack e as x in e') : B → ∃ A x', x = BNamed x' ∧ type_wf n B ∧ TY Σ; n; Γ ⊢ e : (∃: A) ∧ TY ⤉Σ; S n; <[x' := A]> (⤉Γ) ⊢ e' : (B.[ren (+1)]). Proof. inversion 1; subst; eauto 10. Qed. Lemma pair_inversion Σ n Γ e1 e2 C : TY Σ; n; Γ ⊢ (e1, e2) : C → ∃ A B, C = (A × B)%ty ∧ TY Σ; n; Γ ⊢ e1 : A ∧ TY Σ; n; Γ ⊢ e2 : B. Proof. inversion 1; subst; eauto. Qed. Lemma fst_inversion Σ n Γ e A : TY Σ; n; Γ ⊢ Fst e : A → ∃ B, TY Σ; n; Γ ⊢ e : A × B. Proof. inversion 1; subst; eauto. Qed. Lemma snd_inversion Σ n Γ e B : TY Σ; n; Γ ⊢ Snd e : B → ∃ A, TY Σ; n; Γ ⊢ e : A × B. Proof. inversion 1; subst; eauto. Qed. Lemma injl_inversion Σ n Γ e C : TY Σ; n; Γ ⊢ InjL e : C → ∃ A B, C = (A + B)%ty ∧ TY Σ; n; Γ ⊢ e : A ∧ type_wf n B. Proof. inversion 1; subst; eauto. Qed. Lemma injr_inversion Σ n Γ e C : TY Σ; n; Γ ⊢ InjR e : C → ∃ A B, C = (A + B)%ty ∧ TY Σ; n; Γ ⊢ e : B ∧ type_wf n A. Proof. inversion 1; subst; eauto. Qed. Lemma case_inversion Σ n Γ e e1 e2 A : TY Σ; n; Γ ⊢ Case e e1 e2 : A → ∃ B C, TY Σ; n; Γ ⊢ e : B + C ∧ TY Σ; n; Γ ⊢ e1 : (B → A) ∧ TY Σ; n; Γ ⊢ e2 : (C → A). Proof. inversion 1; subst; eauto. Qed. Lemma roll_inversion Σ n Γ e B: TY Σ; n; Γ ⊢ (roll e) : B → ∃ A, B = (μ: A)%ty ∧ TY Σ; n; Γ ⊢ e : A.[μ: A/]. Proof. inversion 1; subst; eauto. Qed. Lemma unroll_inversion Σ n Γ e B: TY Σ; n; Γ ⊢ (unroll e) : B → ∃ A, B = (A.[μ: A/])%ty ∧ TY Σ; n; Γ ⊢ e : μ: A. Proof. inversion 1; subst; eauto. Qed. Lemma new_inversion Σ n Γ e B : TY Σ; n; Γ ⊢ (new e) : B → ∃ A, B = Ref A ∧ TY Σ; n; Γ ⊢ e : A. Proof. inversion 1; subst; eauto. Qed. Lemma load_inversion Σ n Γ e B: TY Σ; n; Γ ⊢ ! e : B → TY Σ; n; Γ ⊢ e : Ref B. Proof. inversion 1; subst; eauto. Qed. Lemma store_inversion Σ n Γ e1 e2 B: TY Σ; n; Γ ⊢ (e1 <- e2) : B → ∃ A, B = Unit ∧ TY Σ; n; Γ ⊢ e1 : Ref A ∧ TY Σ; n; Γ ⊢ e2 : A. Proof. inversion 1; subst; eauto. Qed. Lemma typed_substitutivity Σ n e e' Γ (x: string) A B : heap_ctx_wf 0 Σ → TY Σ; 0; ∅ ⊢ e' : A → TY Σ; n; (<[x := A]> Γ) ⊢ e : B → TY Σ; n; Γ ⊢ lang.subst x e' e : B. Proof. intros HwfΣ He'. induction e as [| y | y | | | | | | | | | | | | | | | | | | | ] in n, B, Γ |-*; simpl. - inversion 1; subst; auto. - intros Hp % var_inversion. destruct (decide (x = y)). + subst. rewrite lookup_insert in Hp. injection Hp as ->. eapply typed_weakening; [done| | done |lia]. apply map_empty_subseteq. + rewrite lookup_insert_ne in Hp; last done. auto. - destruct y as [ | y]. { intros (A' & C & -> & Hwf & Hty) % lam_anon_inversion. econstructor; last done. destruct decide as [Heq|]. + congruence. + eauto. } intros (A' & C & -> & Hwf & Hty) % lam_inversion. econstructor; last done. destruct decide as [Heq|]. + injection Heq as [= ->]. by rewrite insert_insert in Hty. + rewrite insert_commute in Hty; last naive_solver. eauto. - intros (C & Hty1 & Hty2) % app_inversion. eauto. - intros (? & Hop & H1) % unop_inversion. destruct op; inversion Hop; subst; eauto. - intros (? & ? & Hop & H1 & H2) % binop_inversion. destruct op; inversion Hop; subst; eauto. - intros (H1 & H2 & H3)%if_inversion. naive_solver. - intros (C & D & -> & Hwf & Hty) % type_app_inversion. eauto. - intros (C & -> & Hty)%type_lam_inversion. econstructor. rewrite heap_ctx_closed //=. eapply IHe. revert Hty. rewrite fmap_insert. eapply syn_typed_wf in He'; eauto. rewrite heap_ctx_closed //=. rewrite type_wf_closed; eauto. - intros (C & D & -> & Hty & Hwf1 & Hwf2)%type_pack_inversion. econstructor; [done..|]. apply IHe. done. - intros (C & x' & -> & Hwf & Hty1 & Hty2)%type_unpack_inversion. econstructor; first done. + eapply IHe1. done. + destruct decide as [Heq | ]. * injection Heq as [= ->]. by rewrite fmap_insert insert_insert in Hty2. * rewrite fmap_insert in Hty2. rewrite insert_commute in Hty2; last naive_solver. revert Hty2. rewrite heap_ctx_closed//=. intros Hty2. eapply IHe2. rewrite type_wf_closed in Hty2; first done. eapply syn_typed_wf; last apply He'; eauto. - intros (? & ? & -> & ? & ?) % pair_inversion. eauto. - intros (? & ?)%fst_inversion. eauto. - intros (? & ?)%snd_inversion. eauto. - intros (? & ? & -> & ? & ?)%injl_inversion. eauto. - intros (? & ? & -> & ? & ?)%injr_inversion. eauto. - intros (? & ? & ? & ? & ?)%case_inversion. eauto. - intros (C & -> & Hty) % roll_inversion. eauto. - intros (C & -> & Hty) % unroll_inversion. eauto. - intros Hty % load_inversion. eauto. - intros (C & -> & Hty1 & Hty2)% store_inversion. eauto. - intros (C & -> & Hty) % new_inversion. eauto. Qed. (** Canonical values *) Lemma canonical_values_arr Σ n Γ e A B: TY Σ; n; Γ ⊢ e : (A → B) → is_val e → ∃ x e', e = (λ: x, e')%E. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_forall Σ n Γ e A: TY Σ; n; Γ ⊢ e : (∀: A)%ty → is_val e → ∃ e', e = (Λ, e')%E. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_exists Σ n Γ e A : TY Σ; n; Γ ⊢ e : (∃: A) → is_val e → ∃ e', e = (pack e')%E. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_int Σ n Γ e: TY Σ; n; Γ ⊢ e : Int → is_val e → ∃ n: Z, e = (#n)%E. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_bool Σ n Γ e: TY Σ; n; Γ ⊢ e : Bool → is_val e → ∃ b: bool, e = (#b)%E. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_unit Σ n Γ e: TY Σ; n; Γ ⊢ e : Unit → is_val e → e = (#LitUnit)%E. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_prod Σ n Γ e A B : TY Σ; n; Γ ⊢ e : A × B → is_val e → ∃ e1 e2, e = (e1, e2)%E ∧ is_val e1 ∧ is_val e2. Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_sum Σ n Γ e A B : TY Σ; n; Γ ⊢ e : A + B → is_val e → (∃ e', e = InjL e' ∧ is_val e') ∨ (∃ e', e = InjR e' ∧ is_val e'). Proof. inversion 1; simpl; naive_solver. Qed. Lemma canonical_values_rec Σ n Γ e A: TY Σ; n; Γ ⊢ e : (μ: A) → is_val e → ∃ e', e = (roll e')%E ∧ is_val e'. Proof. inversion 1; simpl; subst; naive_solver. Qed. Lemma canonical_values_ref Σ n Γ e A: TY Σ; n; Γ ⊢ e : Ref A → is_val e → ∃ l: loc, e = (#l)%E ∧ Σ !! l = Some A. Proof. inversion 1; simpl; subst; naive_solver. Qed. (** Progress *) Definition heap_type (h: heap) Σ := ∀ l A, Σ !! l = Some A → ∃ v, h !! l = Some v ∧ TY Σ; 0; ∅ ⊢ of_val v : A. Lemma typed_progress Σ e h A: heap_type h Σ → TY Σ; 0; ∅ ⊢ e : A → is_val e ∨ reducible e h. Proof. intros Hheap. remember ∅ as Γ. remember 0 as n. induction 1 as [| | | | Σ n Γ A B e Hty IH | Σ n Γ A B e Hwf Hwf' Hty IH | Σ n Γ A B e e' x Hwf Hty1 IH1 Hty2 IH2 | | | | Σ n Γ e0 e1 e2 A Hty1 IH1 Hty2 IH2 Hty3 IH3 | Σ n Γ e1 e2 A B Hty IH1 _ IH2 | Σ n Γ e1 e2 op A B C Hop Hty1 IH1 Hty2 IH2 | Σ n Γ e op A B Hop Hty IH | Σ n Γ e1 e2 A B Hty1 IH1 Hty2 IH2 | Σ n Γ e A B Hty IH | Σ n Γ e A B Hty IH | Σ n Γ e A B Hwf Hty IH | Σ n Γ e A B Hwf Hty IH| Σ n Γ e e1 e2 A B C Htye IHe Htye1 IHe1 Htye2 IHe2 | Σ n Γ e A Hty IH | Σ n Γ e A Hty IH | Σ n Γ l A Hlook | Σ n Γ e A Hty IH | Σ n Γ e1 e2 A Hty1 IH1 Hty2 IH2 | Σ n Γ e A Hty IH ]. - subst. naive_solver. - left. done. - left. done. - left; done. - right. destruct (IH Hheap HeqΓ Heqn) as [H1|H1]. + eapply canonical_values_forall in Hty as [e' ->]; last done. eexists _, _. eapply base_contextual_step. eapply TBetaS. + destruct H1 as (e' & h' & H1). eexists _, _. eapply (fill_contextual_step [TAppCtx]). done. - (* pack *) destruct (IH Hheap HeqΓ Heqn) as [H | H]. + by left. + right. destruct H as (e' & h' & H). eexists _, _. eapply (fill_contextual_step [PackCtx]). done. - (* unpack *) destruct (IH1 Hheap HeqΓ Heqn) as [H | H]. + eapply canonical_values_exists in Hty1 as [e'' ->]; last done. right. eexists _, _. eapply base_contextual_step. constructor; last done. done. + right. destruct H as (e'' & h'' & H). eexists _, _. eapply (fill_contextual_step [UnpackCtx _ _]). done. - (* int *)left. done. - (* bool*) left. done. - (* unit *) left. done. - (* if *) destruct (IH1 Hheap HeqΓ Heqn) as [H1 | H1]. + eapply canonical_values_bool in Hty1 as (b & ->); last done. right. destruct b; eexists _, _; eapply base_contextual_step; constructor. + right. destruct H1 as (e0' & h' & Hstep). eexists _, _. by eapply (fill_contextual_step [IfCtx _ _]). - (* app *) destruct (IH2 Hheap HeqΓ Heqn) as [H2|H2]; [destruct (IH1 Hheap HeqΓ Heqn) as [H1|H1]|]. + eapply canonical_values_arr in Hty as (x & e & ->); last done. right. eexists _, _. eapply base_contextual_step, BetaS; eauto. + right. eapply is_val_spec in H2 as [v Heq]. replace e2 with (of_val v); last by eapply of_to_val. destruct H1 as (e1' & h' & Hstep). eexists _, _. eapply (fill_contextual_step [AppLCtx v]). done. + right. destruct H2 as (e2' & h' & H2). eexists _, _. eapply (fill_contextual_step [AppRCtx e1]). done. - (* binop *) assert (A = Int ∧ B = Int) as [-> ->]. { inversion Hop; subst A B C; done. } destruct (IH2 Hheap HeqΓ Heqn) as [H2|H2]; [destruct (IH1 Hheap HeqΓ Heqn) as [H1|H1]|]. + right. eapply canonical_values_int in Hty1 as [n1 ->]; last done. eapply canonical_values_int in Hty2 as [n2 ->]; last done. inversion Hop; subst; simpl. all: eexists _, _; eapply base_contextual_step; eapply BinOpS; eauto. + right. eapply is_val_spec in H2 as [v Heq]. replace e2 with (of_val v); last by eapply of_to_val. destruct H1 as (e1' & h' & Hstep). eexists _, _. eapply (fill_contextual_step [BinOpLCtx op v]). done. + right. destruct H2 as (e2' & h' & H2). eexists _, _. eapply (fill_contextual_step [BinOpRCtx op e1]). done. - (* unop *) inversion Hop; subst A B op. + right. destruct (IH Hheap HeqΓ Heqn) as [H2 | H2]. * eapply canonical_values_bool in Hty as [b ->]; last done. eexists _, _; eapply base_contextual_step; eapply UnOpS; eauto. * destruct H2 as (e' & h' & H2). eexists _, _. eapply (fill_contextual_step [UnOpCtx _]). done. + right. destruct (IH Hheap HeqΓ Heqn) as [H2 | H2]. * eapply canonical_values_int in Hty as [z ->]; last done. eexists _, _; eapply base_contextual_step; eapply UnOpS; eauto. * destruct H2 as (e' & h' & H2). eexists _, _. eapply (fill_contextual_step [UnOpCtx _]). done. - (* pair *) destruct (IH2 Hheap HeqΓ Heqn) as [H2|H2]; [destruct (IH1 Hheap HeqΓ Heqn) as [H1|H1]|]. + left. done. + right. eapply is_val_spec in H2 as [v Heq]. replace e2 with (of_val v); last by eapply of_to_val. destruct H1 as (e1' & h' & Hstep). eexists _, _. eapply (fill_contextual_step [PairLCtx v]). done. + right. destruct H2 as (e2' & h' & H2). eexists _, _. eapply (fill_contextual_step [PairRCtx e1]). done. - (* fst *) destruct (IH Hheap HeqΓ Heqn) as [H | H]. + eapply canonical_values_prod in Hty as (e1 & e2 & -> & ? & ?); last done. right. eexists _, _. eapply base_contextual_step. econstructor; done. + right. destruct H as (e' & h' & H). eexists _, _. eapply (fill_contextual_step [FstCtx]). done. - (* snd *) destruct (IH Hheap HeqΓ Heqn) as [H | H]. + eapply canonical_values_prod in Hty as (e1 & e2 & -> & ? & ?); last done. right. eexists _, _. eapply base_contextual_step. econstructor; done. + right. destruct H as (e' & h' & H). eexists _, _. eapply (fill_contextual_step [SndCtx]). done. - (* injl *) destruct (IH Hheap HeqΓ Heqn) as [H | H]. + left. done. + right. destruct H as (e' & h' & H). eexists _, _. eapply (fill_contextual_step [InjLCtx]). done. - (* injr *) destruct (IH Hheap HeqΓ Heqn) as [H | H]. + left. done. + right. destruct H as (e' & h' & H). eexists _, _. eapply (fill_contextual_step [InjRCtx]). done. - (* case *) right. destruct (IHe Hheap HeqΓ Heqn) as [H1|H1]. + eapply canonical_values_sum in Htye as [(e' & -> & ?) | (e' & -> & ?)]; last done. * eexists _, _. eapply base_contextual_step. econstructor. done. * eexists _, _. eapply base_contextual_step. econstructor. done. + destruct H1 as (e' & h' & H1). eexists _, _. eapply (fill_contextual_step [CaseCtx e1 e2]). done. - (* roll *) destruct (IH Hheap HeqΓ Heqn) as [Hval|Hred]. + by left. + right. destruct Hred as (e' & h' & Hred). eexists _, _. eapply (fill_contextual_step [RollCtx]). done. - (* unroll *) destruct (IH Hheap HeqΓ Heqn) as [Hval|Hred]. + eapply canonical_values_rec in Hty as (e' & -> & Hval'); last done. right. eexists _, _. eapply base_contextual_step. by econstructor. + right. destruct Hred as (e' & h' & Hred). eexists _, _. eapply (fill_contextual_step [UnrollCtx]). done. - (* loc *) by left. - (* load *) destruct (IH Hheap HeqΓ Heqn) as [Hval|Hred]. + eapply canonical_values_ref in Hty as (l & -> & Hlook); last done. eapply Hheap in Hlook as (v & Hlook & Hty'). right. do 2 eexists. eapply base_contextual_step. by econstructor. + right. destruct Hred as (e' & h' & Hred). do 2 eexists. eapply (fill_contextual_step [LoadCtx]). done. - (* store *) destruct (IH2 Hheap HeqΓ Heqn) as [H2|H2]; [destruct (IH1 Hheap HeqΓ Heqn) as [H1|H1]|]. + right. eapply canonical_values_ref in Hty1 as (l & -> & Hlook); last done. eapply Hheap in Hlook as (v & Hlook & Hty'). eapply is_val_spec in H2 as (w & Heq). do 2 eexists. eapply base_contextual_step. econstructor; eauto. + right. eapply is_val_spec in H2 as [v Heq]. replace e2 with (of_val v); last by eapply of_to_val. destruct H1 as (e1' & h' & Hstep). do 2 eexists. eapply (fill_contextual_step [StoreLCtx v]). done. + right. destruct H2 as (e2' & h' & H2). do 2 eexists. eapply (fill_contextual_step [StoreRCtx e1]). done. - (* new *) destruct (IH Hheap HeqΓ Heqn) as [Hval|Hred]. + right. eapply is_val_spec in Hval as [v Heq]. do 2 eexists. eapply base_contextual_step. eapply (NewS _ _ _ (fresh (dom h))); last done. eapply not_elem_of_dom, is_fresh. + right. destruct Hred as (e' & h' & Hred). do 2 eexists. eapply (fill_contextual_step [NewCtx]). done. Qed. Definition ectx_item_typing Σ (K: ectx_item) (A B: type) := ∀ e Σ', Σ ⊆ Σ' → TY Σ'; 0; ∅ ⊢ e : A → TY Σ'; 0; ∅ ⊢ (fill_item K e) : B. Notation ectx := (list ectx_item). Definition ectx_typing Σ (K: ectx) (A B: type) := ∀ e Σ', Σ ⊆ Σ' → TY Σ'; 0; ∅ ⊢ e : A → TY Σ'; 0; ∅ ⊢ (fill K e) : B. Lemma ectx_item_typing_weaking Σ Σ' k B A : Σ ⊆ Σ' → ectx_item_typing Σ k B A → ectx_item_typing Σ' k B A. Proof. intros Hsub Hty e Σ'' Hsub'' Hty'. eapply Hty; last done. by transitivity Σ'. Qed. Lemma ectx_typing_weaking Σ Σ' K B A : Σ ⊆ Σ' → ectx_typing Σ K B A → ectx_typing Σ' K B A. Proof. intros Hsub Hty e Σ'' Hsub'' Hty'. eapply Hty; last done. by transitivity Σ'. Qed. Lemma fill_item_typing_decompose Σ k e A: TY Σ; 0; ∅ ⊢ fill_item k e : A → ∃ B, TY Σ; 0; ∅ ⊢ e : B ∧ ectx_item_typing Σ k B A. Proof. unfold ectx_item_typing; destruct k; simpl; inversion 1; subst; eauto 6 using typed_weakening, map_fmap_mono. Qed. Lemma fill_typing_decompose Σ K e A: TY Σ; 0; ∅ ⊢ fill K e : A → ∃ B, TY Σ; 0; ∅ ⊢ e : B ∧ ectx_typing Σ K B A. Proof. unfold ectx_typing; revert e; induction K as [|k K]; intros e; simpl; eauto. intros [B [Hit Hty]] % IHK. eapply fill_item_typing_decompose in Hit as [B' [? ?]]; eauto. Qed. Lemma fill_typing_compose Σ K e A B: TY Σ; 0; ∅ ⊢ e : B → ectx_typing Σ K B A → TY Σ; 0; ∅ ⊢ fill K e : A. Proof. intros H1 H2; by eapply H2. Qed. Lemma fmap_up_subst_ctx σ Γ: ⤉(subst σ <$> Γ) = subst (up σ) <$> ⤉Γ. Proof. rewrite -!map_fmap_compose. eapply map_fmap_ext. intros x A _. by asimpl. Qed. Lemma fmap_up_subst_heap_ctx σ Σ: ⤉(subst σ <$> Σ) = subst (up σ) <$> ⤉Σ. Proof. rewrite -!map_fmap_compose. eapply map_fmap_ext. intros x A _. by asimpl. Qed. Lemma typed_subst_type Σ n m Γ e A σ: TY Σ; n; Γ ⊢ e : A → (∀ k, k < n → type_wf m (σ k)) → TY (subst σ) <$> Σ; m; (subst σ) <$> Γ ⊢ e : A.[σ]. Proof. induction 1 as [ Σ n Γ x A Heq | | | Σ n Γ e A Hty IH | | Σ n Γ A B e Hwf Hwf' Hty IH | Σ n Γ A B e e' x Hwf Hty1 IH1 Hty2 IH2 | | | | | |? ? ? ? ? ? ? ? ? Hop | ? ? ? ? ? ? ? Hop | | | | | | | | | | | | ] in σ, m |-*; simpl; intros Hlt; eauto. - econstructor. rewrite lookup_fmap Heq //=. - econstructor; last by eapply type_wf_subst. rewrite -fmap_insert. eauto. - econstructor; last by eapply type_wf_subst. eauto. - econstructor. rewrite fmap_up_subst_ctx fmap_up_subst_heap_ctx. eapply IH. intros [| x] Hlt'; rewrite /up //=. + econstructor. lia. + eapply type_wf_rename; last by (intros ???; simpl; lia). eapply Hlt. lia. - replace (A.[B/].[σ]) with (A.[up σ].[B.[σ]/]) by by asimpl. eauto using type_wf_subst. - (* pack *) eapply (typed_pack _ _ _ _ (subst σ B)). + eapply type_wf_subst; done. + eapply type_wf_subst; first done. intros [ | k] Hk; first ( asimpl;constructor; lia). rewrite /up //=. eapply type_wf_rename; last by (intros ???; simpl; lia). eapply Hlt. lia. + replace (A.[up σ].[B.[σ]/]) with (A.[B/].[σ]) by by asimpl. eauto using type_wf_subst. - (* unpack *) eapply (typed_unpack _ _ _ A.[up σ]). + eapply type_wf_subst; done. + replace (∃: A.[up σ])%ty with ((∃: A).[σ])%ty by by asimpl. eapply IH1. done. + rewrite fmap_up_subst_ctx fmap_up_subst_heap_ctx. rewrite -fmap_insert. replace (B.[σ].[ren (+1)]) with (B.[ren(+1)].[up σ]) by by asimpl. eapply IH2. intros [ | k] Hk; asimpl; first (constructor; lia). eapply type_wf_subst; first (eapply Hlt; lia). intros k' Hk'. asimpl. constructor. lia. - (* binop *) inversion Hop; subst. all: econstructor; naive_solver. - (* unop *) inversion Hop; subst. all: econstructor; naive_solver. - econstructor; last naive_solver. by eapply type_wf_subst. - econstructor; last naive_solver. by eapply type_wf_subst. - (* roll *) econstructor. replace (A.[up σ].[μ: A.[up σ]/])%ty with (A.[μ: A/].[σ])%ty by by asimpl. eauto. - (* unroll *) replace (A.[μ: A/].[σ])%ty with (A.[up σ].[μ: A.[up σ]/])%ty by by asimpl. econstructor. eapply IHsyn_typed. done. - (* loc *) econstructor. rewrite lookup_fmap H //=. Qed. Lemma typed_subst_type_closed Σ C e A: type_wf 0 C → heap_ctx_wf 0 Σ → TY ⤉Σ; 1; ⤉∅ ⊢ e : A → TY Σ; 0; ∅ ⊢ e : A.[C/]. Proof. intros Hwf Hwf' Hty. eapply typed_subst_type with (σ := C .: ids) (m := 0) in Hty; last first. { intros [|k] Hlt; last lia. done. } revert Hty. rewrite !fmap_empty. rewrite !(heap_ctx_closed Σ); eauto. Qed. Lemma typed_subst_type_closed' Σ x C B e A: type_wf 0 A → type_wf 1 C → type_wf 0 B → heap_ctx_wf 0 Σ → TY ⤉Σ; 1; <[x := C]> ∅ ⊢ e : A → TY Σ; 0; <[x := C.[B/]]> ∅ ⊢ e : A. Proof. intros ???? Hty. set (s := (subst (B.:ids))). rewrite -(fmap_empty s) -(fmap_insert s). replace A with (A.[B/]). 2: { replace A with (A.[ids]) at 2 by by asimpl. eapply type_wf_subst_dom; first done. lia. } rewrite -(heap_ctx_closed Σ (B.:ids)); last done. eapply typed_subst_type. { rewrite -(heap_ctx_closed Σ (ren (+1))); done. } intros [ | k] Hk; last lia. done. Qed. Lemma heap_ctx_insert h l A Σ: heap_type h Σ → h !! l = None → Σ ⊆ <[l:=A]> Σ. Proof. intros Hheap Hlook. eapply insert_subseteq. specialize (Hheap l). destruct (lookup) as [B|]; last done. specialize (Hheap B eq_refl) as (w & Hsome & _). congruence. Qed. Lemma heap_type_insert h Σ e v l B : heap_type h Σ → h !! l = None → TY Σ; 0; ∅ ⊢ e : B → to_val e = Some v → heap_type ({[l := v]} ∪ h) (<[l:=B]> Σ). Proof. intros Hheap Hlook Hty Hval l' A. rewrite lookup_insert_Some. intros [(-> & ->)|(Hne & Hlook')]. - exists v. split; first eapply lookup_union_Some_l, lookup_insert. eapply of_to_val in Hval as ->. eapply typed_weakening; first eapply Hty; eauto. by eapply heap_ctx_insert. - eapply Hheap in Hlook' as (w & Hlook' & Hty'). eexists; split. + rewrite lookup_union_r; eauto. rewrite lookup_insert_ne //=. + eapply typed_weakening; first eapply Hty'; eauto. by eapply heap_ctx_insert. Qed. Lemma heap_type_update h Σ e v l B : heap_type h Σ → Σ !! l = Some B → TY Σ; 0; ∅ ⊢ e : B → to_val e = Some v → heap_type (<[l:=v]> h) Σ. Proof. intros Hheap Hlook Hty Hval l' A Hlook'. eapply Hheap in Hlook' as Hlook''. destruct Hlook'' as (w & Hold & Hval'). destruct (decide (l = l')); subst. - exists v. split; first eapply lookup_insert. eapply of_to_val in Hval as ->. rewrite Hlook in Hlook'. by injection Hlook' as ->. - rewrite lookup_insert_ne //=. eauto. Qed. Lemma typed_preservation_base_step Σ e e' h h' A: heap_ctx_wf 0 Σ → TY Σ; 0; ∅ ⊢ e : A → heap_type h Σ → base_step (e, h) (e', h') → ∃ Σ', Σ ⊆ Σ' ∧ heap_type h' Σ' ∧ heap_ctx_wf 0 Σ' ∧ TY Σ'; 0; ∅ ⊢ e' : A. Proof. intros Hwf' Hty Hhty Hstep. inversion Hstep as [ | | | op e1 v v' h1 Heq Heval | op e1 v1 e2 v2 v3 h1 Heq1 Heq2 Heval | | | | | | | | | | ]; subst. - eapply app_inversion in Hty as (B & H1 & H2). destruct x as [|x]. { eapply lam_anon_inversion in H1 as (C & D & [= -> ->] & Hwf & Hty). exists Σ. do 3 (split; first done). done. } eapply lam_inversion in H1 as (C & D & Heq & Hwf & Hty). injection Heq as -> ->. exists Σ. do 3 (split; first done). eapply typed_substitutivity; eauto. - eapply type_app_inversion in Hty as (B & C & -> & Hwf & Hty). eapply type_lam_inversion in Hty as (A & Heq & Hty). injection Heq as ->. exists Σ. split_and!; [done.. | ]. by eapply typed_subst_type_closed. - eapply type_unpack_inversion in Hty as (B & x' & -> & Hwf & Hty1 & Hty2). eapply type_pack_inversion in Hty1 as (B' & C & [= <-] & Hty1 & ? & ?). exists Σ. split_and!; [done.. | ]. eapply typed_substitutivity. { done. } { apply Hty1. } rewrite fmap_empty in Hty2. eapply typed_subst_type_closed'; eauto. replace A with A.[ids] by by asimpl. enough (A.[ids] = A.[ren (+1)]) as -> by done. eapply type_wf_subst_dom; first done. intros; lia. - (* unop *) eapply unop_inversion in Hty as (A1 & Hop & Hty). assert ((A1 = Int ∧ A = Int) ∨ (A1 = Bool ∧ A = Bool)) as [(-> & ->) | (-> & ->)]. { inversion Hop; subst; eauto. } + eapply canonical_values_int in Hty as [n ->]; last by eapply is_val_spec; eauto. simpl in Heq. injection Heq as <-. exists Σ; split_and!; [done..|]. inversion Hop; subst; simpl in *; injection Heval as <-; constructor. + eapply canonical_values_bool in Hty as [b ->]; last by eapply is_val_spec; eauto. simpl in Heq. injection Heq as <-. exists Σ; split_and!; [done..|]. inversion Hop; subst; simpl in *; injection Heval as <-; constructor. - (* binop *) eapply binop_inversion in Hty as (A1 & A2 & Hop & Hty1 & Hty2). assert (A1 = Int ∧ A2 = Int ∧ (A = Int ∨ A = Bool)) as (-> & -> & HC). { inversion Hop; subst; eauto. } eapply canonical_values_int in Hty1 as [n ->]; last by eapply is_val_spec; eauto. eapply canonical_values_int in Hty2 as [m ->]; last by eapply is_val_spec; eauto. simpl in Heq1, Heq2. injection Heq1 as <-. injection Heq2 as <-. simpl in Heval. exists Σ; split_and!; [done..|]. inversion Hop; subst; simpl in *; injection Heval as <-; constructor. - exists Σ; split_and!; [done..|]. by eapply if_inversion in Hty as (H1 & H2 & H3). - exists Σ; split_and!; [done..|]. by eapply if_inversion in Hty as (H1 & H2 & H3). - exists Σ; split_and!; [done..|]. by eapply fst_inversion in Hty as (B & (? & ? & [= <- <-] & ? & ?)%pair_inversion). - exists Σ; split_and!; [done..|]. by eapply snd_inversion in Hty as (B & (? & ? & [= <- <-] & ? & ?)%pair_inversion). - exists Σ; split_and!; [done..|]. eapply case_inversion in Hty as (B & C & (? & ? & [= <- <-] & Hty & ?)%injl_inversion & ? & ?). eauto. - exists Σ; split_and!; [done..|]. eapply case_inversion in Hty as (B & C & (? & ? & [= <- <-] & Hty & ?)%injr_inversion & ? & ?). eauto. - (* unroll *) exists Σ; split_and!; [done..|]. eapply unroll_inversion in Hty as (B & -> & Hty). eapply roll_inversion in Hty as (C & Heq & Hty). injection Heq as ->. done. - (* new *) (* TODO: exercise *) admit. - (* load *) (* TODO: exercise *) admit. - (* store *) (* TODO: exercise *) admit. Admitted. Lemma typed_preservation Σ e e' h h' A: heap_ctx_wf 0 Σ → TY Σ; 0; ∅ ⊢ e : A → heap_type h Σ → contextual_step (e, h) (e', h') → ∃ Σ', Σ ⊆ Σ' ∧ heap_type h' Σ' ∧ heap_ctx_wf 0 Σ' ∧ TY Σ'; 0; ∅ ⊢ e' : A. Proof. intros Hwf Hty Hheap Hstep. inversion Hstep as [K e1' e2' σ1 σ2 e1 e2 -> -> Hstep']; subst. eapply fill_typing_decompose in Hty as [B [H1 H2]]. eapply typed_preservation_base_step in H1 as (Σ' & Hsub & Hheap' & Hwf' & Hty'); eauto. eexists; repeat split; try done. eapply fill_typing_compose, ectx_typing_weaking; eauto. Qed. Lemma typed_preservation_steps Σ e e' h h' A: heap_ctx_wf 0 Σ → TY Σ; 0; ∅ ⊢ e : A → heap_type h Σ → rtc contextual_step (e, h) (e', h') → ∃ Σ', Σ ⊆ Σ' ∧ heap_type h' Σ' ∧ heap_ctx_wf 0 Σ' ∧ TY Σ'; 0; ∅ ⊢ e' : A. Proof. intros Hwf Hty Hheap Hsteps. remember (e, h) as c1. remember (e', h') as c2. induction Hsteps as [|? [] ? Hstep Hsteps IH] in Σ, h, h',e, e', Heqc1, Heqc2, Hwf, Hty, Hheap |-*. - rewrite Heqc1 in Heqc2. injection Heqc2 as -> ->. eauto. - subst; eapply typed_preservation in Hty as (Σ' & Hsub' & Hheap' & Hwf' & Hty'); [|eauto..]. eapply IH in Hty' as (Σ'' & Hsub'' & Hheap'' & Hwf'' & Hty''); [|eauto..]. exists Σ''; repeat split; eauto. by trans Σ'. Qed. Lemma type_safety Σ e1 e2 h1 h2 A: heap_ctx_wf 0 Σ → TY Σ; 0; ∅ ⊢ e1 : A → heap_type h1 Σ → rtc contextual_step (e1, h1) (e2, h2) → is_val e2 ∨ reducible e2 h2. Proof. intros Hwf Hy Hheap Hsteps. eapply typed_preservation_steps in Hsteps as (Σ' & Hsub & Hheap' & Hwf' & Hty'); eauto. eapply typed_progress; eauto. Qed. (* applies to terms containing no free locations (like the erasure of source terms) *) Corollary closed_type_safety e e' h A: TY ∅; 0; ∅ ⊢ e : A → rtc contextual_step (e, ∅) (e', h) → is_val e' ∨ reducible e' h. Proof. intros Hty Hsteps. eapply type_safety; eauto. intros ??. set_solver. Qed. (** Derived typing rules *) Lemma typed_unroll' Σ n Γ e A B: TY Σ; n; Γ ⊢ e : (μ: A) → B = A.[(μ: A)%ty/] → TY Σ; n; Γ ⊢ (unroll e) : B. Proof. intros ? ->. by eapply typed_unroll. Qed. Lemma typed_tapp' Σ n Γ A B C e : TY Σ; n; Γ ⊢ e : (∀: A) → type_wf n B → C = A.[B/] → TY Σ; n; Γ ⊢ e <> : C. Proof. intros; subst C; by eapply typed_tapp. Qed.