From iris.proofmode Require Import coq_tactics reduction spec_patterns. From iris.proofmode Require Export tactics. From iris.heap_lang Require Export tactics. From iris.heap_lang Require Import notation. From semantics.pl.heap_lang Require Export derived_laws. From semantics.pl.program_logic Require Export notation. From iris.prelude Require Import options. Import uPred. Lemma tac_wp_expr_eval `{!heapGS Σ} Δ s E1 E2 Φ e e' : (∀ (e'':=e'), e = e'') → envs_entails Δ (WP e' @ s; E1; E2 {{ Φ }}) → envs_entails Δ (WP e @ s; E1; E2 {{ Φ }}). Proof. by intros ->. Qed. Tactic Notation "wp_expr_eval" tactic3(t) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => notypeclasses refine (tac_wp_expr_eval _ _ _ _ _ e _ _ _); [let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|] | _ => fail "wp_expr_eval: not a 'wp'" end. Ltac wp_expr_simpl := wp_expr_eval simpl. Lemma tac_wp_pure `{!heapGS Σ} Δ Δ' s E1 E2 K e1 e2 φ n Φ : PureExec φ n e1 e2 → φ → MaybeIntoLaterNEnvs n Δ Δ' → envs_entails Δ' (WP (fill K e2) @ s; E1; E2 {{ Φ }}) → envs_entails Δ (WP (fill K e1) @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> ??? HΔ'. rewrite into_laterN_env_sound /=. (* We want [pure_exec_fill] to be available to TC search locally. *) pose proof @pure_exec_fill. rewrite HΔ' -lifting.wp_pure_step_later //. Qed. Lemma tac_wp_value_nofupd `{!heapGS Σ} Δ s E Φ v : envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E; E {{ Φ }}). Proof. rewrite envs_entails_unseal=> ->. by apply wp_value. Qed. (** Simplify the goal if it is [WP] of a value. If the postcondition already allows a fupd, do not add a second one. But otherwise, *do* add a fupd. This ensures that all the lemmas applied here are bidirectional, so we never will make a goal unprovable. *) Ltac wp_value_head := lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 (Val _) _) => eapply tac_wp_value_nofupd end. Ltac wp_finish := wp_expr_simpl; (* simplify occurences of subst/fill *) pm_prettify. (* prettify ▷s caused by [MaybeIntoLaterNEnvs] and λs caused by wp_value *) Ltac solve_vals_compare_safe := (* The first branch is for when we have [vals_compare_safe] in the context. The other two branches are for when either one of the branches reduces to [True] or we have it in the context. *) fast_done || (left; fast_done) || (right; fast_done). (** The argument [efoc] can be used to specify the construct that should be reduced. For example, you can write [wp_pure (EIf _ _ _)], which will search for an [EIf _ _ _] in the expression, and reduce it. The use of [open_constr] in this tactic is essential. It will convert all holes (i.e. [_]s) into evars, that later get unified when an occurences is found (see [unify e' efoc] in the code below). *) Tactic Notation "wp_pure" open_constr(efoc) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => let e := eval simpl in e in reshape_expr e ltac:(fun K e' => unify e' efoc; eapply (tac_wp_pure _ _ _ _ _ K e'); [tc_solve (* PureExec *) |try solve_vals_compare_safe (* The pure condition for PureExec -- handles trivial goals, including [vals_compare_safe] *) |tc_solve (* IntoLaters *) |wp_finish (* new goal *) ]) || fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex" | _ => fail "wp_pure: not a 'wp'" end. Ltac wp_pures := iStartProof; first [ (* The `;[]` makes sure that no side-condition magically spawns. *) progress repeat (wp_pure _; []) | wp_finish (* In case wp_pure never ran, make sure we do the usual cleanup. *) ]. (** Unlike [wp_pures], the tactics [wp_rec] and [wp_lam] should also reduce lambdas/recs that are hidden behind a definition, i.e. they should use [AsRecV_recv] as a proper instance instead of a [Hint Extern]. We achieve this by putting [AsRecV_recv] in the current environment so that it can be used as an instance by the typeclass resolution system. We then perform the reduction, and finally we clear this new hypothesis. *) Tactic Notation "wp_rec" := let H := fresh in assert (H := AsRecV_recv); wp_pure (App _ _); clear H. Tactic Notation "wp_if" := wp_pure (If _ _ _). Tactic Notation "wp_if_true" := wp_pure (If (LitV (LitBool true)) _ _). Tactic Notation "wp_if_false" := wp_pure (If (LitV (LitBool false)) _ _). Tactic Notation "wp_unop" := wp_pure (UnOp _ _). Tactic Notation "wp_binop" := wp_pure (BinOp _ _ _). Tactic Notation "wp_op" := wp_unop || wp_binop. Tactic Notation "wp_lam" := wp_rec. Tactic Notation "wp_let" := wp_pure (Rec BAnon (BNamed _) _); wp_lam. Tactic Notation "wp_seq" := wp_pure (Rec BAnon BAnon _); wp_lam. Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _). Tactic Notation "wp_case" := wp_pure (Case _ _ _). Tactic Notation "wp_match" := wp_case; wp_pure (Rec _ _ _); wp_lam. Tactic Notation "wp_inj" := wp_pure (InjL _) || wp_pure (InjR _). Tactic Notation "wp_pair" := wp_pure (Pair _ _). Tactic Notation "wp_closure" := wp_pure (Rec _ _ _). (* will spawn an evar for [E2] *) Lemma tac_wp_bind `{!heapGS Σ} K Δ s E1 E2 E3 Φ e f : f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *) envs_entails Δ (WP e @ s; E1; E2 {{ v, WP f (Val v) @ s; E2; E3 {{ Φ }} }})%I → envs_entails Δ (WP fill K e @ s; E1; E3 {{ Φ }}). Proof. rewrite envs_entails_unseal=> -> ->. by apply: wp_bind. Qed. (* don't change masks for bound expression *) Lemma tac_wp_bind_nomask `{!heapGS Σ} K Δ s E1 E2 Φ e f : f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *) envs_entails Δ (WP e @ s; E1; E1 {{ v, WP f (Val v) @ s; E1; E2 {{ Φ }} }})%I → envs_entails Δ (WP fill K e @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> -> ->. by apply: wp_bind. Qed. Ltac wp_bind_core K := lazymatch eval hnf in K with | [] => idtac | _ => eapply (tac_wp_bind_nomask K); [simpl; reflexivity|reduction.pm_prettify] end. Tactic Notation "wp_bind" open_constr(efoc) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K) | fail 1 "wp_bind: cannot find" efoc "in" e ] | _ => fail "wp_bind: not a 'wp'" end. Ltac wp_bind_core' K := lazymatch eval hnf in K with | [] => idtac | _ => eapply (tac_wp_bind K); [simpl; reflexivity|reduction.pm_prettify] end. Tactic Notation "wp_bind'" open_constr(efoc) := iStartProof; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core' K) | fail 1 "wp_bind: cannot find" efoc "in" e ] | _ => fail "wp_bind: not a 'wp'" end. (** Heap tactics *) Section heap. Context `{!heapGS Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types Δ : envs (uPredI (iResUR Σ)). Implicit Types v : val. Implicit Types z : Z. Lemma wand_apply' (P R Q : iProp Σ) : (P ⊢ R) → (R -∗ Q) → P ⊢ Q. Proof. intros Ha Hb. iIntros "HP". iApply Hb. iApply Ha. done. Qed. Lemma tac_wp_allocN Δ Δ' s E1 E2 j K v n Φ : (0 < n)%Z → MaybeIntoLaterNEnvs 1 Δ Δ' → (∀ l, match envs_app false (Esnoc Enil j (array l (DfracOwn 1) (replicate (Z.to_nat n) v))) Δ' with | Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV $ LitLoc l) @ s; E1; E2 {{ Φ }}) | None => False end) → envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> ? ? HΔ. rewrite -wp_bind. eapply wand_apply'; last exact: wp_allocN. rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l. specialize (HΔ l). destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ]. rewrite envs_app_sound //; simpl. apply wand_intro_l. by rewrite right_id wand_elim_r. Qed. Lemma tac_wp_alloc Δ Δ' s E1 E2 j K v Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → (∀ l, match envs_app false (Esnoc Enil j (l ↦ v)) Δ' with | Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV l) @ s; E1; E2 {{ Φ }}) | None => False end) → envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> ? HΔ. rewrite -wp_bind. eapply wand_apply'; last exact: wp_alloc. rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l. specialize (HΔ l). destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ]. rewrite envs_app_sound //; simpl. apply wand_intro_l. by rewrite right_id wand_elim_r. Qed. Lemma tac_wp_free Δ Δ' s E1 E2 i K l v Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → (let Δ'' := envs_delete false i false Δ' in envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E1; E2 {{ Φ }})) → envs_entails Δ (WP fill K (Free (LitV l)) @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> ? Hlk Hfin. rewrite -wp_bind. eapply wand_apply; first apply wand_entails, wp_free. rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl. rewrite -Hfin wand_elim_r (envs_lookup_sound' _ _ _ _ _ Hlk). by apply later_mono, sep_mono_r. Qed. Lemma tac_wp_load Δ Δ' s E1 E2 i K b l q v Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (b, l ↦{q} v)%I → envs_entails Δ' (WP fill K (Val v) @ s; E1; E2 {{ Φ }}) → envs_entails Δ (WP fill K (Load (LitV l)) @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> ?? Hi. rewrite -wp_bind. eapply wand_apply; first apply wand_entails, wp_load. rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl. apply later_mono. destruct b; simpl. * iIntros "[#$ He]". iIntros "_". iApply Hi. iApply "He". iFrame "#". * by apply sep_mono_r, wand_mono. Qed. Lemma tac_wp_store Δ Δ' s E1 E2 i K l v v' Φ : MaybeIntoLaterNEnvs 1 Δ Δ' → envs_lookup i Δ' = Some (false, l ↦ v)%I → match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' with | Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E1; E2 {{ Φ }}) | None => False end → envs_entails Δ (WP fill K (Store (LitV l) (Val v')) @ s; E1; E2 {{ Φ }}). Proof. rewrite envs_entails_unseal=> ???. destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ]. rewrite -wp_bind. eapply wand_apply; first apply wand_entails, wp_store. rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl. rewrite right_id. by apply later_mono, sep_mono_r, wand_mono. Qed. End heap. (** The tactic [wp_apply_core lem tac_suc tac_fail] evaluates [lem] to a hypothesis [H] that can be applied, and then runs [wp_bind_core K; tac_suc H] for every possible evaluation context [K]. - The tactic [tac_suc] should do [iApplyHyp H] to actually apply the hypothesis, but can perform other operations in addition (see [wp_apply] and [awp_apply] below). - The tactic [tac_fail cont] is called when [tac_suc H] fails for all evaluation contexts [K], and can perform further operations before invoking [cont] to try again. TC resolution of [lem] premises happens *after* [tac_suc H] got executed. *) Ltac wp_apply_core lem tac_suc tac_fail := first [iPoseProofCore lem as false (fun H => lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => reshape_expr e ltac:(fun K e' => wp_bind_core K; tac_suc H) | _ => fail 1 "wp_apply: not a 'wp'" end) |tac_fail ltac:(fun _ => wp_apply_core lem tac_suc tac_fail) |let P := type of lem in fail "wp_apply: cannot apply" lem ":" P ]. Tactic Notation "wp_apply" open_constr(lem) := wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl) ltac:(fun cont => fail). Tactic Notation "wp_smart_apply" open_constr(lem) := wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl) ltac:(fun cont => wp_pure _; []; cont ()). Tactic Notation "wp_alloc" ident(l) "as" constr(H) := let Htmp := iFresh in let finish _ := first [intros l | fail 1 "wp_alloc:" l "not fresh"]; pm_reduce; lazymatch goal with | |- False => fail 1 "wp_alloc:" H "not fresh" | _ => iDestructHyp Htmp as H; wp_finish end in wp_pures; (** The code first tries to use allocation lemma for a single reference, ie, [tac_wp_alloc] (respectively, [tac_twp_alloc]). If that fails, it tries to use the lemma [tac_wp_allocN] (respectively, [tac_twp_allocN]) for allocating an array. Notice that we could have used the array allocation lemma also for single references. However, that would produce the resource l ↦∗ [v] instead of l ↦ v for single references. These are logically equivalent assertions but are not equal. *) lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => let process_single _ := first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc _ _ _ _ _ Htmp K)) |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; [tc_solve |finish ()] in let process_array _ := first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_allocN _ _ _ _ _ Htmp K)) |fail 1 "wp_alloc: cannot find 'Alloc' in" e]; [idtac|tc_solve |finish ()] in (process_single ()) || (process_array ()) | _ => fail "wp_alloc: not a 'wp'" end. Tactic Notation "wp_alloc" ident(l) := wp_alloc l as "?". Tactic Notation "wp_free" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_free: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_free _ _ _ _ _ _ K)) |fail 1 "wp_free: cannot find 'Free' in" e]; [tc_solve |solve_mapsto () |pm_reduce; wp_finish] | _ => fail "wp_free: not a 'wp'" end. Tactic Notation "wp_load" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_load: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ _ K)) |fail 1 "wp_load: cannot find 'Load' in" e]; [tc_solve |solve_mapsto () |wp_finish] | _ => fail "wp_load: not a 'wp'" end. Tactic Notation "wp_store" := let solve_mapsto _ := let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in iAssumptionCore || fail "wp_store: cannot find" l "↦ ?" in wp_pures; lazymatch goal with | |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) => first [reshape_expr e ltac:(fun K e' => eapply (tac_wp_store _ _ _ _ _ _ K)) |fail 1 "wp_store: cannot find 'Store' in" e]; [tc_solve |solve_mapsto () |pm_reduce; first [wp_seq|wp_finish]] | _ => fail "wp_store: not a 'wp'" end.