You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

41 lines
1.1 KiB

#![feature(generic_arg_infer)]
use neuramethyst::prelude::*;
use neuramethyst::derivable::activation::{Relu};
use neuramethyst::derivable::loss::Euclidean;
fn main() {
let mut network = neura_network![
neura_layer!("dense", Relu, 4, 2),
neura_layer!("dense", Relu, 3),
neura_layer!("dense", Relu, 1)
];
let inputs = [
([0.0, 0.0], [0.0]),
([0.0, 1.0], [1.0]),
([1.0, 0.0], [1.0]),
([1.0, 1.0], [0.0])
];
for (input, target) in inputs {
println!("Input: {:?}, target: {}, actual: {:.3}", &input, target[0], network.eval(&input)[0]);
}
let mut trainer = NeuraBatchedTrainer::new(0.05, 1000);
trainer.batch_size = 6;
trainer.log_epochs = 250;
trainer.learning_momentum = 0.01;
trainer.train(
NeuraBackprop::new(Euclidean),
&mut network,
cycle_shuffling(inputs.iter().cloned(), rand::thread_rng()),
&inputs,
);
for (input, target) in inputs {
println!("Input: {:?}, target: {}, actual: {:.3}", &input, target[0], network.eval(&input)[0]);
}
}