|
|
|
use nalgebra::{dvector, DVector};
|
|
|
|
use neuramethyst::derivable::activation::{LeakyRelu, Logistic, Swish, Tanh};
|
|
|
|
use neuramethyst::derivable::regularize::*;
|
|
|
|
use neuramethyst::gradient_solver::NeuraForwardForward;
|
|
|
|
use neuramethyst::prelude::*;
|
|
|
|
use rand::Rng;
|
|
|
|
|
|
|
|
const EPOCHS: usize = 10;
|
|
|
|
const REG_FACTOR: f32 = 0.003;
|
|
|
|
|
|
|
|
macro_rules! iteration {
|
|
|
|
( $network:ident, $width:expr, $trainer:expr, $gradient_solver:expr, $test_inputs:expr ) => {
|
|
|
|
let mut $network = neura_sequential![
|
|
|
|
..($network.lock()),
|
|
|
|
neura_layer!("normalize")
|
|
|
|
.construct(NeuraShape::Vector($width))
|
|
|
|
.unwrap(),
|
|
|
|
neura_layer!("dense", $width)
|
|
|
|
.activation(Swish(Logistic))
|
|
|
|
.regularization(NeuraL2(REG_FACTOR))
|
|
|
|
.construct(NeuraShape::Vector($width))
|
|
|
|
.unwrap()
|
|
|
|
];
|
|
|
|
for _epoch in 0..EPOCHS {
|
|
|
|
$trainer.train(&$gradient_solver, &mut $network, generator(), &$test_inputs);
|
|
|
|
|
|
|
|
draw_network(&$network);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn main() {
|
|
|
|
let width: usize = 60;
|
|
|
|
|
|
|
|
let mut network = neura_sequential![neura_layer!("dense", width).activation(LeakyRelu(0.1)),]
|
|
|
|
.construct(NeuraShape::Vector(2))
|
|
|
|
.unwrap();
|
|
|
|
|
|
|
|
let test_inputs = generator().filter(|x| x.1).take(50).collect::<Vec<_>>();
|
|
|
|
|
|
|
|
let gradient_solver = NeuraForwardForward::new(Tanh, 0.5);
|
|
|
|
let mut trainer = NeuraBatchedTrainer::new().learning_rate(0.01).iterations(0);
|
|
|
|
trainer.batch_size = 256;
|
|
|
|
|
|
|
|
for _epoch in 0..EPOCHS {
|
|
|
|
trainer.train(&gradient_solver, &mut network, generator(), &test_inputs);
|
|
|
|
|
|
|
|
draw_network(&network);
|
|
|
|
}
|
|
|
|
|
|
|
|
iteration!(network, width, trainer, gradient_solver, test_inputs);
|
|
|
|
iteration!(network, width, trainer, gradient_solver, test_inputs);
|
|
|
|
iteration!(network, width, trainer, gradient_solver, test_inputs);
|
|
|
|
iteration!(network, width, trainer, gradient_solver, test_inputs);
|
|
|
|
// iteration!(network, width, trainer, gradient_solver, test_inputs);
|
|
|
|
// iteration!(network, width, trainer, gradient_solver, test_inputs);
|
|
|
|
}
|
|
|
|
|
|
|
|
fn generator() -> impl Iterator<Item = (DVector<f32>, bool)> {
|
|
|
|
let mut rng = rand::thread_rng();
|
|
|
|
std::iter::repeat_with(move || {
|
|
|
|
let good = rng.gen_bool(0.5);
|
|
|
|
// Clifford attractor
|
|
|
|
let (a, b, c, d) = (1.5, -1.8, 1.6, 0.9);
|
|
|
|
|
|
|
|
let noise = 0.0005;
|
|
|
|
let mut x: f32 = rng.gen_range(-noise..noise);
|
|
|
|
let mut y: f32 = rng.gen_range(-noise..noise);
|
|
|
|
for _ in 0..rng.gen_range(150..200) {
|
|
|
|
let nx = (a * y).sin() + c * (a * x).cos();
|
|
|
|
let ny = (b * x).sin() + d * (b * y).cos();
|
|
|
|
x = nx;
|
|
|
|
y = ny;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Bad samples are shifted by a random amount
|
|
|
|
if !good {
|
|
|
|
let radius = rng.gen_range(0.4..0.5);
|
|
|
|
let angle = rng.gen_range(0.0..std::f32::consts::TAU);
|
|
|
|
x += angle.cos() * radius;
|
|
|
|
y += angle.sin() * radius;
|
|
|
|
}
|
|
|
|
|
|
|
|
(dvector![x, y], good)
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO: move this to the library?
|
|
|
|
fn draw_neuron_activation<F: Fn([f64; 2]) -> Vec<f64>>(callback: F, scale: f64) {
|
|
|
|
use viuer::Config;
|
|
|
|
|
|
|
|
const WIDTH: u32 = 64;
|
|
|
|
const HEIGHT: u32 = 64;
|
|
|
|
|
|
|
|
let mut image = image::RgbImage::new(WIDTH, HEIGHT);
|
|
|
|
|
|
|
|
fn sigmoid(x: f64) -> f64 {
|
|
|
|
0.1 + 0.9 * x.abs().powf(0.8)
|
|
|
|
}
|
|
|
|
|
|
|
|
for y in 0..HEIGHT {
|
|
|
|
let y2 = 2.0 * y as f64 / HEIGHT as f64 - 1.0;
|
|
|
|
for x in 0..WIDTH {
|
|
|
|
let x2 = 2.0 * x as f64 / WIDTH as f64 - 1.0;
|
|
|
|
let activation = callback([x2 * scale, y2 * scale]);
|
|
|
|
let r = (sigmoid(activation.get(0).copied().unwrap_or(-1.0)) * 255.0).floor() as u8;
|
|
|
|
let g = (sigmoid(activation.get(1).copied().unwrap_or(-1.0)) * 255.0).floor() as u8;
|
|
|
|
let b = (sigmoid(activation.get(2).copied().unwrap_or(-1.0)) * 255.0).floor() as u8;
|
|
|
|
|
|
|
|
*image.get_pixel_mut(x, y) = image::Rgb([r, g, b]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
let config = Config {
|
|
|
|
use_kitty: false,
|
|
|
|
truecolor: true,
|
|
|
|
// absolute_offset: false,
|
|
|
|
..Default::default()
|
|
|
|
};
|
|
|
|
|
|
|
|
viuer::print(&image::DynamicImage::ImageRgb8(image), &config).unwrap();
|
|
|
|
}
|
|
|
|
|
|
|
|
fn draw_network<Network: NeuraLayer<DVector<f32>, Output = DVector<f32>>>(network: &Network) {
|
|
|
|
draw_neuron_activation(
|
|
|
|
|input| {
|
|
|
|
let result = network.eval(&dvector![input[0] as f32, input[1] as f32]);
|
|
|
|
let result_good = result.map(|x| x * x).sum();
|
|
|
|
|
|
|
|
let result_norm = result / result_good.sqrt();
|
|
|
|
let mut result_rgb = DVector::from_element(3, 0.0);
|
|
|
|
|
|
|
|
for i in 0..result_norm.len() {
|
|
|
|
result_rgb[i % 3] += result_norm[i].abs();
|
|
|
|
}
|
|
|
|
|
|
|
|
(result_rgb * result_good.tanh() * 12.0 / result_norm.len() as f32)
|
|
|
|
.into_iter()
|
|
|
|
.map(|x| *x as f64)
|
|
|
|
.collect()
|
|
|
|
},
|
|
|
|
2.0,
|
|
|
|
);
|
|
|
|
}
|