You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

141 lines
4.7 KiB

use nalgebra::{dvector, DVector};
use neuramethyst::derivable::activation::Tanh;
use neuramethyst::derivable::regularize::NeuraL1;
use neuramethyst::gradient_solver::NeuraForwardForward;
use neuramethyst::{plot_losses, prelude::*};
use rand::Rng;
fn main() {
let mut network = neura_residual![
<= 0, 2;
neura_layer!("dense", 6).regularization(NeuraL1(0.001));
neura_layer!("normalize");
neura_layer!("dense", 6).regularization(NeuraL1(0.001));
]
.construct(NeuraShape::Vector(3))
.unwrap();
let inputs = (0..1).cycle().map(move |_| {
let mut rng = rand::thread_rng();
let category = rng.gen_bool(0.5);
let good = rng.gen_bool(0.5);
let (x, y) = if category {
let radius: f32 = rng.gen_range(0.0..2.0);
let angle = rng.gen_range(0.0..std::f32::consts::TAU);
(angle.cos() * radius, angle.sin() * radius)
} else {
let radius: f32 = rng.gen_range(3.0..5.0);
let angle = rng.gen_range(0.0..std::f32::consts::TAU);
(angle.cos() * radius, angle.sin() * radius)
};
if good {
(dvector![x, y, category as u8 as f32], true)
} else {
(dvector![x, y, 1.0 - category as u8 as f32], false)
}
});
let test_inputs: Vec<_> = inputs.clone().filter(|(_, good)| *good).take(10).collect();
let threshold = 0.5f32;
if std::env::args().any(|arg| arg == "draw") {
for epoch in 0..200 {
let mut trainer = NeuraBatchedTrainer::new().learning_rate(0.03).iterations(0);
trainer.batch_size = 50;
trainer.train(
&NeuraForwardForward::new(Tanh, threshold as f64),
&mut network,
inputs.clone(),
&test_inputs,
);
// let network = network.clone().trim_tail().trim_tail();
draw_neuron_activation(
|input| {
let cat0 = network.eval(&dvector![input[0] as f32, input[1] as f32, 0.0]);
let cat1 = network.eval(&dvector![input[0] as f32, input[1] as f32, 1.0]);
let cat0_good = cat0.map(|x| x * x).sum();
let cat1_good = cat1.map(|x| x * x).sum();
let estimation = cat1_good / (cat0_good + cat1_good);
let cat0_norm = cat0 / cat0_good.sqrt();
let mut cat0_rgb = DVector::from_element(3, 0.0);
for i in 0..cat0_norm.len() {
cat0_rgb[i % 3] += cat0_norm[i].abs();
}
(cat0_rgb * estimation)
.into_iter()
.map(|x| *x as f64)
.collect()
},
6.0,
);
println!("{}", epoch);
std::thread::sleep(std::time::Duration::new(0, 50_000_000));
}
} else {
let mut trainer = NeuraBatchedTrainer::new()
.learning_rate(0.03)
.iterations(20 * 50);
trainer.batch_size = 50;
trainer.log_iterations = 20;
plot_losses(
trainer.train(
&NeuraForwardForward::new(Tanh, threshold as f64),
&mut network,
inputs.clone(),
&test_inputs,
),
128,
48,
);
// println!("{}", String::from("\n").repeat(64));
// draw_neuron_activation(|input| network.eval(&input).into_iter().collect(), 6.0);
}
}
// TODO: move this to the library?
fn draw_neuron_activation<F: Fn([f64; 2]) -> Vec<f64>>(callback: F, scale: f64) {
use viuer::Config;
const WIDTH: u32 = 64;
const HEIGHT: u32 = 64;
let mut image = image::RgbImage::new(WIDTH, HEIGHT);
fn sigmoid(x: f64) -> f64 {
0.1 + 0.9 * x.abs().powf(0.8)
}
for y in 0..HEIGHT {
let y2 = 2.0 * y as f64 / HEIGHT as f64 - 1.0;
for x in 0..WIDTH {
let x2 = 2.0 * x as f64 / WIDTH as f64 - 1.0;
let activation = callback([x2 * scale, y2 * scale]);
let r = (sigmoid(activation.get(0).copied().unwrap_or(-1.0)) * 255.0).floor() as u8;
let g = (sigmoid(activation.get(1).copied().unwrap_or(-1.0)) * 255.0).floor() as u8;
let b = (sigmoid(activation.get(2).copied().unwrap_or(-1.0)) * 255.0).floor() as u8;
*image.get_pixel_mut(x, y) = image::Rgb([r, g, b]);
}
}
let config = Config {
use_kitty: false,
truecolor: true,
// absolute_offset: false,
..Default::default()
};
viuer::print(&image::DynamicImage::ImageRgb8(image), &config).unwrap();
}