You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

88 lines
2.8 KiB

#![feature(generic_arg_infer)]
#![feature(generic_const_exprs)]
use neuramethyst::algebra::NeuraVector;
use neuramethyst::derivable::reduce::{Average, Max};
use rust_mnist::Mnist;
use neuramethyst::derivable::activation::{Linear, Relu};
use neuramethyst::derivable::loss::CrossEntropy;
use neuramethyst::{cycle_shuffling, one_hot, prelude::*};
fn main() {
const TRAIN_SIZE: usize = 1000;
let Mnist {
train_data: train_images,
train_labels,
test_data: test_images,
test_labels,
..
} = Mnist::new("data/");
let train_images = train_images
.into_iter()
.map(|raw| {
raw.into_iter()
.map(|x| x as f64 / 255.0)
.collect::<NeuraVector<{ 28 * 28 }, f64>>()
})
.take(TRAIN_SIZE);
let train_labels = train_labels
.into_iter()
.map(|x| one_hot::<10>(x as usize))
.take(TRAIN_SIZE);
let test_images = test_images
.into_iter()
.map(|raw| {
raw.into_iter()
.map(|x| x as f64 / 255.0)
.collect::<NeuraVector<{ 28 * 28 }, f64>>()
})
.take(TRAIN_SIZE / 6);
let test_labels = test_labels
.into_iter()
.map(|x| one_hot::<10>(x as usize))
.take(TRAIN_SIZE / 6);
let train_iter = cycle_shuffling(
train_images.zip(train_labels.into_iter()),
rand::thread_rng(),
);
let test_inputs: Vec<_> = test_images.zip(test_labels.into_iter()).collect();
let mut network = neura_sequential![
neura_layer!("unstable_reshape", 1, { 28 * 28 }),
neura_layer!("conv2d_pad", 1, {28 * 28}; 28, 3; neura_layer!("dense", {1 * 3 * 3}, 3; Relu)),
// neura_layer!("conv2d_block", 7, 7; 4; neura_layer!("dense", {3 * 4 * 4}, 8; Relu)),
// neura_layer!("conv2d_pad"; 28, 1; neura_layer!("dense", {30 * 1 * 1}, 10; Relu)),
neura_layer!("unstable_flatten"),
neura_layer!("dropout", 0.33),
neura_layer!("unstable_reshape", 3, { 28 * 28 }),
neura_layer!("conv2d_block", 14, 14; 2; neura_layer!("dense", {3 * 2 * 2}, 2; Relu)),
// neura_layer!("unstable_flatten"),
// neura_layer!("dropout", 0.33),
// neura_layer!("unstable_reshape", 2, { 14 * 14 }),
// neura_layer!("conv2d_pad"; 14, 5; neura_layer!("dense", {2 * 5 * 5}, 20; Relu)),
// neura_layer!("pool_global"; Max),
// neura_layer!("pool1d", {14 * 2}, 7; Max),
neura_layer!("unstable_flatten"),
neura_layer!("dropout", 0.2),
neura_layer!("dense", 10; Linear),
neura_layer!("softmax")
];
let mut trainer = NeuraBatchedTrainer::with_epochs(0.03, 100, 128, TRAIN_SIZE);
trainer.learning_momentum = 0.001;
trainer.train(
NeuraBackprop::new(CrossEntropy),
&mut network,
train_iter,
&test_inputs,
);
}