You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
145 lines
3.9 KiB
145 lines
3.9 KiB
use nalgebra::DVector;
|
|
use rust_mnist::Mnist;
|
|
|
|
use neuramethyst::{
|
|
argmax, cycle_shuffling,
|
|
derivable::{
|
|
activation::{Linear, Logistic, Relu, Swish, Tanh},
|
|
loss::{CrossEntropy, Euclidean},
|
|
},
|
|
plot_losses,
|
|
prelude::*,
|
|
};
|
|
|
|
const TRAIN_SIZE: usize = 50000;
|
|
const TEST_SIZE: usize = 1000;
|
|
const WIDTH: usize = 28;
|
|
const HEIGHT: usize = 28;
|
|
const LATENT_SIZE: usize = 25;
|
|
|
|
pub fn main() {
|
|
let Mnist {
|
|
train_data: train_images,
|
|
train_labels,
|
|
test_data: test_images,
|
|
test_labels,
|
|
..
|
|
} = Mnist::new("data/");
|
|
|
|
let train_images = train_images
|
|
.into_iter()
|
|
.map(|raw| {
|
|
DVector::from_iterator(WIDTH * HEIGHT, raw.into_iter().map(|x| x as f32 / 255.0))
|
|
})
|
|
.take(TRAIN_SIZE);
|
|
let train_labels = train_labels
|
|
.into_iter()
|
|
.map(|x| one_hot(x as usize, 10))
|
|
.take(TRAIN_SIZE);
|
|
|
|
let test_images = test_images
|
|
.into_iter()
|
|
.map(|raw| {
|
|
DVector::from_iterator(WIDTH * HEIGHT, raw.into_iter().map(|x| x as f32 / 255.0))
|
|
})
|
|
.take(TEST_SIZE);
|
|
let test_labels = test_labels
|
|
.into_iter()
|
|
.map(|x| one_hot(x as usize, 10))
|
|
.take(TEST_SIZE);
|
|
|
|
let test_data = test_images
|
|
.clone()
|
|
.zip(test_images.clone())
|
|
.collect::<Vec<_>>();
|
|
|
|
// First, train an encoder-decoder network (unsupervised)
|
|
|
|
let mut network = neura_sequential![
|
|
neura_layer!("dense", 100).activation(Swish(Logistic)),
|
|
neura_layer!("dense", 50).activation(Swish(Logistic)),
|
|
neura_layer!("dense", LATENT_SIZE).activation(Tanh),
|
|
neura_layer!("dense", 50),
|
|
neura_layer!("dense", 100),
|
|
neura_layer!("dense", WIDTH * HEIGHT).activation(Relu),
|
|
]
|
|
.construct(NeuraShape::Vector(WIDTH * HEIGHT))
|
|
.unwrap();
|
|
|
|
let trainer = NeuraBatchedTrainer::with_epochs(0.03, 75, 512, TRAIN_SIZE);
|
|
// trainer.log_iterations = 1;
|
|
|
|
let losses = trainer.train(
|
|
&NeuraBackprop::new(Euclidean),
|
|
&mut network,
|
|
cycle_shuffling(
|
|
train_images.clone().zip(train_images.clone()),
|
|
rand::thread_rng(),
|
|
),
|
|
&test_data,
|
|
);
|
|
|
|
plot_losses(losses, 128, 48);
|
|
|
|
// Then, train a small network to decode the encoded data into the categories
|
|
|
|
let trimmed_network = network.clone().trim_tail().trim_tail().trim_tail();
|
|
|
|
let mut network = neura_sequential![
|
|
..trimmed_network.lock(),
|
|
neura_layer!("dense", LATENT_SIZE)
|
|
.activation(Tanh)
|
|
.construct(NeuraShape::Vector(LATENT_SIZE))
|
|
.unwrap(),
|
|
neura_layer!("dense", 10)
|
|
.activation(Linear)
|
|
.construct(NeuraShape::Vector(LATENT_SIZE))
|
|
.unwrap(),
|
|
neura_layer!("softmax")
|
|
];
|
|
let test_data = test_images
|
|
.clone()
|
|
.zip(test_labels.clone())
|
|
.collect::<Vec<_>>();
|
|
|
|
let trainer = NeuraBatchedTrainer::with_epochs(0.03, 20, 128, TRAIN_SIZE);
|
|
|
|
plot_losses(
|
|
trainer.train(
|
|
&NeuraBackprop::new(Euclidean),
|
|
&mut network,
|
|
cycle_shuffling(train_images.clone().zip(train_labels), rand::thread_rng()),
|
|
&test_data,
|
|
),
|
|
128,
|
|
48,
|
|
);
|
|
|
|
let mut correct = 0;
|
|
for (test_image, test_label) in test_images.zip(test_labels) {
|
|
let guess = network.eval(&test_image);
|
|
let guess = argmax(guess.as_slice());
|
|
let actual = argmax(test_label.as_slice());
|
|
|
|
if guess == actual {
|
|
correct += 1;
|
|
}
|
|
}
|
|
|
|
println!("");
|
|
println!(
|
|
"{} correct out of {}: {:.2}%",
|
|
correct,
|
|
TEST_SIZE,
|
|
(correct as f32 / TEST_SIZE as f32) * 100.0
|
|
);
|
|
}
|
|
|
|
fn one_hot(value: usize, categories: usize) -> DVector<f32> {
|
|
let mut res = DVector::from_element(categories, 0.0);
|
|
if value < categories {
|
|
res[value] = 1.0;
|
|
}
|
|
res
|
|
}
|