You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

55 lines
1.5 KiB

#![feature(generic_arg_infer)]
use std::fs::File;
use nalgebra::dvector;
use neuramethyst::derivable::activation::{Relu, Tanh};
use neuramethyst::derivable::loss::Euclidean;
use neuramethyst::prelude::*;
fn main() {
let mut network = neura_sequential![
neura_layer!("dense", 4, f64).activation(Relu),
neura_layer!("dense", 1, f64).activation(Tanh)
]
.construct(NeuraShape::Vector(2))
.unwrap();
let inputs = [
(dvector![0.0, 0.0], dvector![0.0]),
(dvector![0.0, 1.0], dvector![1.0]),
(dvector![1.0, 0.0], dvector![1.0]),
(dvector![1.0, 1.0], dvector![0.0]),
];
let mut trainer = NeuraBatchedTrainer::new(0.05, 1);
trainer.batch_size = 1;
let mut parameters = vec![(
network.layer.weights.clone(),
network.layer.bias.clone(),
network.child_network.layer.weights.clone(),
network.child_network.layer.bias.clone()
)];
for iteration in 0..4 {
trainer.train(
&NeuraBackprop::new(Euclidean),
&mut network,
inputs.iter().cloned().skip(iteration).take(1),
&inputs,
);
parameters.push((
network.layer.weights.clone(),
network.layer.bias.clone(),
network.child_network.layer.weights.clone(),
network.child_network.layer.bias.clone()
));
}
let mut output = File::create("tests/xor.json").unwrap();
serde_json::to_writer(&mut output, &parameters).unwrap();
}