You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/MulActionExt.lean

46 lines
1.5 KiB

import Mathlib.GroupTheory.GroupAction.Basic
namespace Rubin
variable {G α β : Type _} [Group G]
variable [MulAction G α]
theorem smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
congr_arg ((· • ·) g) h
#align smul_congr Rubin.smul_congr
theorem smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
⟨fun h => (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
(smul_congr g h).symm.trans (smul_inv_smul g x)⟩
#align smul_eq_iff_inv_smul_eq Rubin.smul_eq_iff_inv_smul_eq
theorem smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ) :
g • x = x → g ^ n • x = x := by
induction n with
| zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
| succ n n_ih =>
intro h
nth_rw 2 [← (smul_congr g (n_ih h)).trans h]
rw [← mul_smul, ← pow_succ]
#align smul_pow_eq_of_smul_eq Rubin.smul_pow_eq_of_smul_eq
theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) :
g • x = x → g ^ n • x = x := by
intro h
cases n with
| ofNat n => let res := smul_pow_eq_of_smul_eq n h; simp; exact res
| negSucc n =>
let res :=
smul_eq_iff_inv_smul_eq.mp (smul_pow_eq_of_smul_eq (1 + n) h);
simp
rw [add_comm]
exact res
#align smul_zpow_eq_of_smul_eq Rubin.smul_zpow_eq_of_smul_eq
def is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
[MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
#align is_equivariant Rubin.is_equivariant
end Rubin