Almost complete proof of proposition 3.5

laurent-lost-commits
Shad Amethyst 6 months ago
parent 55d674e96a
commit 23d0821290

@ -47,13 +47,9 @@ theorem equiv_congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y
----------------------------------------------------------------
section Rubin
variable {G α β : Type _} [Group G]
----------------------------------------------------------------
section RubinActions
variable [TopologicalSpace α] [TopologicalSpace β]
structure RubinAction (G α : Type _) extends
Group G,
TopologicalSpace α,
@ -699,16 +695,18 @@ by
repeat rw [<-proposition_2_1]
exact alg_disj
#check proposition_2_1
lemma rigidStabilizerInter_eq_algebraicCentralizerInter {S : Finset G} :
RigidStabilizerInter₀ α S = AlgebraicCentralizerInter₀ S :=
by
unfold RigidStabilizerInter₀
unfold AlgebraicCentralizerInter₀
conv => {
lhs
congr; intro; congr; intro
rw [<-proposition_2_1]
}
simp only [<-proposition_2_1]
-- conv => {
-- rhs
-- congr; intro; congr; intro
-- rw [proposition_2_1 (α := α)]
-- }
theorem rigidStabilizerBasis_eq_algebraicCentralizerBasis :
AlgebraicCentralizerBasis G = RigidStabilizerBasis G α :=
@ -744,44 +742,231 @@ open Topology
variable {G α : Type _} [Group G] [TopologicalSpace α] [T2Space α]
variable [MulAction G α] [ContinuousMulAction G α] [FaithfulSMul G α] [LocallyMoving G α]
#check RegularSupportBasis.asSet
#check RigidStabilizerBasis
-- TODO: implement Smul of G on RigidStabilizerBasis?
-- theorem regularSupportBasis_eq_ridigStabilizerBasis :
-- RegularSupportBasis.asSet α = RigidStabilizerBasis (HomeoGroup α) α :=
-- by
-- sorry
-- TODO: implement Membership on RegularSupportBasis
-- TODO: wrap these things in some neat structures
-- theorem proposition_3_5 {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α]
-- [T2Space α] [LocallyCompactSpace α] [h_ld : LocallyDense G α] [HasNoIsolatedPoints α]
-- [hc : ContinuousMulAction G α]
-- (U : RegularSupportBasis α) (F: Filter α):
-- (∃ p ∈ U.val, F.HasBasis (fun S: Set α => S ∈ RegularSupportBasis.asSet α ∧ p ∈ S) id)
-- ↔ ∃ V : RegularSupportBasis α, V ≤ U ∧ {W : RegularSupportBasis α | W ≤ V} ⊆ { g •'' W | (g ∈ RigidStabilizer G U.val) (W ∈ F) (_: W ∈ RegularSupportBasis.asSet α) }
-- :=
-- by
-- constructor
-- {
-- simp
-- intro p p_in_U filter_basis
-- have assoc_poset_basis := RegularSupportBasis.isBasis G α
-- have F_eq_nhds : F = 𝓝 p := by
-- have nhds_basis := assoc_poset_basis.nhds_hasBasis (a := p)
-- rw [<-filter_basis.filter_eq]
-- rw [<-nhds_basis.filter_eq]
-- have p_in_int_cl := h_ld.isLocallyDense U U.regular.isOpen p p_in_U
-- -- TODO: show that ∃ V ⊆ closure (orbit (rist G U) p)
-- sorry
-- }
-- sorry
example : TopologicalSpace G := TopologicalSpace.generateFrom (RigidStabilizerBasis.asSets G α)
-- TODO: remove
-- proposition_3_4_1
example {α : Type _} [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] (F : Ultrafilter α) (p : α):
F ≤ 𝓝 p ↔ p ∈ ⋂ (S ∈ F), closure S :=
by
rw [<-Ultrafilter.clusterPt_iff]
simp
exact clusterPt_iff_forall_mem_closure
theorem proposition_3_4_2 {α : Type _} [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] (F : Ultrafilter α):
(∃ p : α, ClusterPt p F) ↔ ∃ S ∈ F, IsCompact (closure S) :=
by
constructor
· intro ⟨p, p_clusterPt⟩
rw [Ultrafilter.clusterPt_iff] at p_clusterPt
have ⟨S, S_in_nhds, S_compact⟩ := (compact_basis_nhds p).ex_mem
use S
constructor
exact p_clusterPt S_in_nhds
rw [IsClosed.closure_eq S_compact.isClosed]
exact S_compact
· intro ⟨S, S_in_F, clS_compact⟩
have F_le_principal_S : F ≤ Filter.principal (closure S) := by
rw [Filter.le_principal_iff]
simp
apply Filter.sets_of_superset
exact S_in_F
exact subset_closure
let ⟨x, _, F_clusterPt⟩ := clS_compact F_le_principal_S
use x
def RSuppSubsets {α : Type _} [TopologicalSpace α] (V : Set α) : Set (Set α) :=
{W ∈ RegularSupportBasis.asSet α | W ⊆ V}
def RSuppOrbit {G α : Type _} [Group G] [TopologicalSpace α] [MulAction G α] (F : Filter α) (H : Subgroup G) : Set (Set α) :=
{ g •'' W | (g ∈ H) (W ∈ F) }
lemma moving_elem_of_open_subset_closure_orbit {U V : Set α} (U_open : IsOpen U) {p : α}
(U_ss_clOrbit : U ⊆ closure (MulAction.orbit (RigidStabilizer G V) p)) :
∃ h : G, h ∈ RigidStabilizer G V ∧ h • p ∈ U :=
by
-- Idea: can `Support α g ⊆ MulAction.orbit (RigidStabilizer G (RegularSupport α g)) p` be proven?
sorry
lemma compact_subset_of_rsupp_basis [LocallyCompactSpace α]
(U : RegularSupportBasis α):
∃ V : RegularSupportBasis α, (closure V.val) ⊆ U.val ∧ IsCompact (closure V.val) :=
by
-- Idea: use (RegularSupportBasis.isBasis G α).nhds_hasBasis and compact_basis_nhds together?
-- Note: exists_compact_subset is *very* close to this theorem
sorry
theorem proposition_3_5 [LocallyDense G α] [LocallyCompactSpace α] [HasNoIsolatedPoints α]
(U : RegularSupportBasis α) (F: Ultrafilter α):
(∃ p ∈ U.val, ClusterPt p F)
↔ ∃ V : RegularSupportBasis α, V ≤ U ∧ RSuppSubsets V.val ⊆ RSuppOrbit F (RigidStabilizer G U.val) :=
by
constructor
{
simp
intro p p_in_U p_clusterPt
have U_open : IsOpen U.val := U.regular.isOpen
-- First, get a neighborhood of p that is a subset of the closure of the orbit of G_U
have clOrbit_in_nhds := LocallyDense.rigidStabilizer_in_nhds G α U_open p_in_U
rw [mem_nhds_iff] at clOrbit_in_nhds
let ⟨V, V_ss_clOrbit, V_open, p_in_V⟩ := clOrbit_in_nhds
clear clOrbit_in_nhds
-- Then, get a nontrivial element from that set
let ⟨g, g_in_rist, g_ne_one⟩ := LocallyMoving.get_nontrivial_rist_elem (G := G) V_open ⟨p, p_in_V⟩
-- Somehow, the regular support of g is within U
have rsupp_ss_U : RegularSupport α g ⊆ U.val := by
rw [RegularSupport, InteriorClosure]
apply interiorClosure_subset_of_regular _ U.regular
rw [<-rigidStabilizer_support]
apply rigidStabilizer_mono _ g_in_rist
show V ⊆ U.val
-- Would probably require showing that the orbit of the rigidstabilizer is a subset of U
sorry
-- Use as the chosen set RegularSupport g
let g' : HomeoGroup α := HomeoGroup.fromContinuous α g
have g'_ne_one : g' ≠ 1 := by
simp
rw [<-HomeoGroup.fromContinuous_one (G := G)]
rw [HomeoGroup.fromContinuous_eq_iff]
exact g_ne_one
use RegularSupportBasis.fromSingleton g' g'_ne_one
constructor
· -- This statement is equivalent to rsupp(g) ⊆ U
rw [RegularSupportBasis.le_def]
rw [RegularSupportBasis.fromSingleton_val]
unfold RegularSupportInter₀
simp
exact rsupp_ss_U
· intro W W_in_subsets
rw [RegularSupportBasis.fromSingleton_val] at W_in_subsets
unfold RSuppSubsets RegularSupportInter₀ at W_in_subsets
simp at W_in_subsets
let ⟨W_in_basis, W_subset_rsupp⟩ := W_in_subsets
clear W_in_subsets g' g'_ne_one
-- We have that W is a subset of the closure of the orbit of G_U
have W_ss_clOrbit : W ⊆ closure (MulAction.orbit (↥(RigidStabilizer G U.val)) p) := by
rw [rigidStabilizer_support] at g_in_rist
calc
W ⊆ RegularSupport α g := by assumption
_ ⊆ closure (Support α g) := regularSupport_subset_closure_support
_ ⊆ closure V := by
apply closure_mono
assumption
_ ⊆ _ := by
rw [<-closure_closure (s := MulAction.orbit _ _)]
apply closure_mono
assumption
unfold RSuppOrbit
simp
have W_open : IsOpen W := by
let ⟨W', W'_eq⟩ := (RegularSupportBasis.mem_asSet _).mp W_in_basis
rw [<-W'_eq]
exact W'.regular.isOpen
have W_nonempty : Set.Nonempty W := by
let ⟨W', W'_eq⟩ := (RegularSupportBasis.mem_asSet _).mp W_in_basis
rw [<-W'_eq]
exact W'.nonempty
-- We get an element `h` such that `h • p ∈ W` and `h ∈ G_U`
let ⟨h, h_in_rist, hp_in_W⟩ := moving_elem_of_open_subset_closure_orbit W_open W_ss_clOrbit
use h
constructor
exact h_in_rist
use h⁻¹ •'' W
constructor
swap
{
rw [smulImage_mul]
simp
}
-- We just need to show that h⁻¹ •'' W ∈ F, that is, h⁻¹ •'' W ∈ 𝓝 p
rw [Ultrafilter.clusterPt_iff] at p_clusterPt
apply p_clusterPt
have basis := (RegularSupportBasis.isBasis G α).nhds_hasBasis (a := p)
rw [basis.mem_iff]
use h⁻¹ •'' W
repeat' apply And.intro
· rw [RegularSupportBasis.mem_asSet]
rw [RegularSupportBasis.mem_asSet] at W_in_basis
let ⟨W', W'_eq⟩ := W_in_basis
have dec_eq : DecidableEq (HomeoGroup α) := Classical.decEq _
use (HomeoGroup.fromContinuous α h⁻¹) • W'
rw [RegularSupportBasis.smul_val, W'_eq]
simp
· rw [mem_smulImage, inv_inv]
exact hp_in_W
· exact Eq.subset rfl
}
{
intro ⟨V, ⟨V_ss_U, subsets_ss_orbit⟩⟩
rw [RegularSupportBasis.le_def] at V_ss_U
-- Obtain a compact subset of V' in the basis
let ⟨V', clV'_ss_V, clV'_compact⟩ := compact_subset_of_rsupp_basis V
have V'_in_subsets : V'.val ∈ RSuppSubsets V.val := by
unfold RSuppSubsets
simp
constructor
unfold RegularSupportBasis.asSet
simp
exact subset_trans subset_closure clV'_ss_V
-- V' is in the orbit, so there exists a value `g ∈ G_U` such that `gV ∈ F`
-- Note that with the way we set up the equations, we obtain `g⁻¹`
have V'_in_orbit := subsets_ss_orbit V'_in_subsets
simp [RSuppOrbit] at V'_in_orbit
let ⟨g, g_in_rist, ⟨W, W_in_F, gW_eq_V⟩⟩ := V'_in_orbit
have gV'_in_F : g⁻¹ •'' V' ∈ F := by
rw [smulImage_inv] at gW_eq_V
rw [<-gW_eq_V]
assumption
have gV'_compact : IsCompact (closure (g⁻¹ •'' V'.val)) := by
rw [smulImage_closure _ _ (continuousMulAction_elem_continuous α g⁻¹)]
-- TODO: smulImage_compact
sorry
have ⟨p, p_lim⟩ := (proposition_3_4_2 F).mpr ⟨g⁻¹ •'' V'.val, ⟨gV'_in_F, gV'_compact⟩⟩
use p
constructor
swap
assumption
rw [clusterPt_iff_forall_mem_closure] at p_lim
specialize p_lim (g⁻¹ •'' V') gV'_in_F
rw [smulImage_closure _ _ (continuousMulAction_elem_continuous α g⁻¹)] at p_lim
rw [mem_smulImage, inv_inv] at p_lim
rw [rigidStabilizer_support] at g_in_rist
rw [<-support_inv] at g_in_rist
have q := fixed_smulImage_in_support g⁻¹ g_in_rist
rw [<-fixed_smulImage_in_support g⁻¹ g_in_rist]
rw [mem_smulImage, inv_inv]
apply V_ss_U
apply clV'_ss_V
exact p_lim
}
end HomeoGroup
variable {G α β : Type _}
variable [Group G]
variable [TopologicalSpace α] [MulAction G α] [ContinuousMulAction G α]
[TopologicalSpace β] [MulAction G β] [ContinuousMulAction G β]

@ -140,18 +140,99 @@ instance homeoGroup_mulAction₁_faithful : FaithfulSMul (HomeoGroup α) α wher
simp
exact hyp x
theorem homeoGroup_support_eq_support_toHomeomorph {G : Type _}
[Group G] [MulAction G α] [Rubin.ContinuousMulAction G α] (g : G) :
Rubin.Support α g = Rubin.Support α (HomeoGroup.from (Rubin.ContinuousMulAction.toHomeomorph α g)) :=
theorem HomeoGroup.smulImage_eq_image (g : HomeoGroup α) (S : Set α) :
g •'' S = ⇑g.toHomeomorph '' S := rfl
section ContinuousMulActionCoe
variable {G : Type _} [Group G]
variable [MulAction G α] [Rubin.ContinuousMulAction G α]
/--
`fromContinuous` is a structure-preserving transformation from a continuous `MulAction` to a `HomeoGroup`
--/
def HomeoGroup.fromContinuous (α : Type _) [TopologicalSpace α] [MulAction G α] [Rubin.ContinuousMulAction G α]
(g : G) : HomeoGroup α :=
HomeoGroup.from (Rubin.ContinuousMulAction.toHomeomorph α g)
@[simp]
theorem HomeoGroup.fromContinuous_def (g : G) :
HomeoGroup.from (Rubin.ContinuousMulAction.toHomeomorph α g) = HomeoGroup.fromContinuous α g := rfl
-- instance homeoGroup_coe_fromContinuous : Coe G (HomeoGroup α) where
-- coe := fun g => HomeoGroup.fromContinuous α g
@[simp]
theorem HomeoGroup.fromContinuous_smul (g : G) :
∀ x : α, (HomeoGroup.fromContinuous α g) • x = g • x :=
by
intro x
unfold fromContinuous
rw [<-HomeoGroup.smul₁_def', HomeoGroup.from_toHomeomorph]
unfold Rubin.ContinuousMulAction.toHomeomorph
simp
theorem HomeoGroup.fromContinuous_one :
HomeoGroup.fromContinuous α (1 : G) = (1 : HomeoGroup α) :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
simp
theorem HomeoGroup.fromContinuous_mul (g h : G):
(HomeoGroup.fromContinuous α g) * (HomeoGroup.fromContinuous α h) = (HomeoGroup.fromContinuous α (g * h)) :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [mul_smul]
simp
rw [mul_smul]
theorem HomeoGroup.fromContinuous_inv (g : G):
HomeoGroup.fromContinuous α g⁻¹ = (HomeoGroup.fromContinuous α g)⁻¹ :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
group_action
rw [mul_smul]
simp
theorem HomeoGroup.fromContinuous_eq_iff [FaithfulSMul G α] (g h : G):
(HomeoGroup.fromContinuous α g) = (HomeoGroup.fromContinuous α h) ↔ g = h :=
by
constructor
· intro cont_eq
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [<-HomeoGroup.fromContinuous_smul g]
rw [cont_eq]
simp
· tauto
@[simp]
theorem HomeoGroup.fromContinuous_support (g : G) :
Rubin.Support α (HomeoGroup.fromContinuous α g) = Rubin.Support α g :=
by
ext x
repeat rw [Rubin.mem_support]
rw [<-HomeoGroup.smul₁_def]
rw [<-HomeoGroup.smul₁_def, <-HomeoGroup.fromContinuous_def]
rw [HomeoGroup.from_toHomeomorph]
rw [Rubin.ContinuousMulAction.toHomeomorph_toFun]
theorem HomeoGroup.smulImage_eq_image (g : HomeoGroup α) (S : Set α) :
g •'' S = ⇑g.toHomeomorph '' S := rfl
@[simp]
theorem HomeoGroup.fromContinuous_regularSupport (g : G) :
Rubin.RegularSupport α (HomeoGroup.fromContinuous α g) = Rubin.RegularSupport α g :=
by
unfold Rubin.RegularSupport
rw [HomeoGroup.fromContinuous_support]
@[simp]
theorem HomeoGroup.fromContinuous_smulImage (g : G) (V : Set α) :
(HomeoGroup.fromContinuous α g) •'' V = g •'' V :=
by
repeat rw [Rubin.smulImage_def]
simp
end ContinuousMulActionCoe
namespace Rubin

@ -97,6 +97,13 @@ theorem monotone_interiorClosure : Monotone (InteriorClosure (α := α))
:= fun a b =>
interiorClosure_mono a b
theorem interiorClosure_subset_of_regular {U V : Set α} (U_ss_V : U ⊆ V) (V_regular : Regular V) :
InteriorClosure U ⊆ V :=
by
rw [<-V_regular]
apply interiorClosure_mono
assumption
theorem compl_closure_regular_of_open {S : Set α} (S_open : IsOpen S) : Regular (closure S)ᶜ := by
apply Set.eq_of_subset_of_subset
· simp

@ -126,7 +126,7 @@ instance homeoGroup_mulAction₂ : MulAction (HomeoGroup α) (RegularSupportBasi
end RegularSupportBasis.Prelude
-- TODO: define RegularSupportBasis as a Set directly?
/--
A partially-ordered set, associated to Rubin's proof.
Any element in that set is made up of a `seed`,
@ -153,18 +153,44 @@ def fromSeed (seed : RegularSupportBasis₀ α) : RegularSupportBasis α := ⟨
⟨seed, seed.val_def⟩
def fromSingleton [T2Space α] (g : HomeoGroup α) (g_ne_one : g ≠ 1) : RegularSupportBasis α :=
let seed : RegularSupportBasis₀ α := ⟨
{g},
by
unfold RegularSupportInter₀
simp
rw [Set.nonempty_iff_ne_empty]
intro rsupp_empty
apply g_ne_one
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
simp
rw [<-not_mem_support]
apply Set.not_mem_subset
· apply support_subset_regularSupport
· rw [rsupp_empty]
exact Set.not_mem_empty x
fromSeed seed
theorem fromSingleton_val [T2Space α] (g : HomeoGroup α) (g_ne_one : g ≠ 1) :
(fromSingleton g g_ne_one).val = RegularSupportInter₀ {g} := rfl
noncomputable def full_seed (S : RegularSupportBasis α) : RegularSupportBasis₀ α :=
(Exists.choose S.val_has_seed)
noncomputable def seed (S : RegularSupportBasis α) : Finset (HomeoGroup α) :=
S.full_seed.seed
instance : Coe (RegularSupportBasis₀ α) (RegularSupportBasis α) where
coe := fromSeed
@[simp]
theorem full_seed_seed (S : RegularSupportBasis α) : S.full_seed.seed = S.seed := rfl
@[simp]
theorem fromSeed_val (seed : RegularSupportBasis₀ α) :
(fromSeed seed).val = seed.val :=
(seed : RegularSupportBasis α).val = seed.val :=
by
unfold fromSeed
simp
@ -320,10 +346,13 @@ theorem mem_iff (x : α) (S : RegularSupportBasis α) : x ∈ S ↔ x ∈ (S : S
section Basis
open Topology
variable (G α : Type _)
variable [Group G]
variable [TopologicalSpace α] [T2Space α] [LocallyCompactSpace α] [HasNoIsolatedPoints α]
variable [MulAction G α] [LocallyDense G α] [ContinuousMulAction G α]
-- TODO: clean this lemma to not mention W anymore?
lemma proposition_3_2_subset (G : Type _) {α : Type _} [Group G] [TopologicalSpace α] [MulAction G α]
[T2Space α] [LocallyCompactSpace α] [h_ld : LocallyDense G α] [HasNoIsolatedPoints α]
[ContinuousMulAction G α]
lemma proposition_3_2_subset
{U : Set α} (U_open : IsOpen U) {p : α} (p_in_U : p ∈ U) :
∃ (W : Set α), W ∈ 𝓝 p ∧ closure W ⊆ U ∧
∃ (g : G), g ∈ RigidStabilizer G W ∧ p ∈ RegularSupport α g ∧ RegularSupport α g ⊆ closure W :=
@ -378,9 +407,7 @@ by
/--
## Proposition 3.2 : RegularSupportBasis is a topological basis of `α`
-/
theorem isBasis (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α]
[T2Space α] [LocallyCompactSpace α] [h_ld : LocallyDense G α] [HasNoIsolatedPoints α]
[hc : ContinuousMulAction G α] :
theorem isBasis :
TopologicalSpace.IsTopologicalBasis (RegularSupportBasis.asSet α) :=
by
apply TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
@ -393,22 +420,43 @@ by
}
intro p U p_in_U U_open
let ⟨W, _, clW_ss_U, ⟨g, _, p_in_rsupp, rsupp_ss_clW⟩⟩ := proposition_3_2_subset G U_open p_in_U
let ⟨W, _, clW_ss_U, ⟨g, _, p_in_rsupp, rsupp_ss_clW⟩⟩ := proposition_3_2_subset G α U_open p_in_U
use RegularSupport α g
repeat' apply And.intro
· rw [RegularSupportBasis.mem_asSet']
constructor
exact ⟨p, p_in_rsupp⟩
use {(ContinuousMulAction.toHomeomorph α g : HomeoGroup α)}
use {HomeoGroup.fromContinuous α g}
unfold RegularSupportInter₀
simp
unfold RegularSupport
rw [<-homeoGroup_support_eq_support_toHomeomorph g]
· exact p_in_rsupp
· apply subset_trans
exact rsupp_ss_clW
exact clW_ss_U
-- example (p : α): ∃ (S : Set α), S ∈ (RegularSupportBasis.asSet α) ∧ IsCompact (closure S) ∧ p ∈ S :=
-- by
-- have h₁ := TopologicalSpace.IsTopologicalBasis.nhds_hasBasis (isBasis G α) (a := p)
-- have h₂ := compact_basis_nhds p
-- rw [Filter.hasBasis_iff] at h₁
-- rw [Filter.hasBasis_iff] at h₂
-- have T : Set α := sorry
-- have T_in_nhds : T ∈ 𝓝 p := sorry
-- let ⟨U, ⟨⟨U_in_nhds, U_compact⟩, U_ss_T⟩⟩ := (h₂ T).mp T_in_nhds
-- let ⟨V, ⟨⟨V_in_basis, p_in_V⟩, V_ss_T⟩⟩ := (h₁ U).mp U_in_nhds
-- use V
-- (repeat' apply And.intro) <;> try assumption
-- -- apply IsCompact.of_isClosed_subset
-- -- · assumption
-- -- · sorry
-- -- · assumption
-- sorry
end Basis
end RegularSupportBasis
end Rubin

Loading…
Cancel
Save