Define group action from HomeoGroup to AssociatedPoset

laurent-lost-commits
Shad Amethyst 11 months ago
parent 652e1a0773
commit 3b0b8a8a65

@ -143,30 +143,108 @@ namespace Rubin
variable {α : Type _}
variable [TopologicalSpace α]
variable [DecidableEq α]
-- Note that the condition that the resulting set is non-empty is introduced later in `RegularInter`
-- TODO: rename!!!
def RegularInterElem (S : Finset (HomeoGroup α)): Set α :=
/--
Maps a "seed" of homeorphisms in α to the intersection of their regular support in α.
Note that the condition that the resulting set is non-empty is introduced later in `AssociatedPosetSeed`
--/
def AssociatedPosetElem (S : Finset (HomeoGroup α)): Set α :=
⋂₀ ((fun (g : HomeoGroup α) => RegularSupport α g) '' S)
def RegularInter (α : Type _) [TopologicalSpace α]: Type* :=
{ S : Set α //
Set.Nonempty S
∧ ∃ (seed : Finset (HomeoGroup α)), S = RegularInterElem seed
}
/--
This is a predecessor type to `AssociatedPoset`, where equality is defined on the `seed` used, rather than the `val`.
--/
structure AssociatedPosetSeed (α : Type _) [TopologicalSpace α] where
seed : Finset (HomeoGroup α)
val_nonempty : Set.Nonempty (AssociatedPosetElem seed)
theorem AssociatedPosetSeed.eq_iff_seed_eq (S T : AssociatedPosetSeed α) : S = T ↔ S.seed = T.seed := by
-- Spooky :3c
rw [mk.injEq]
def AssociatedPosetSeed.val (S : AssociatedPosetSeed α) : Set α := AssociatedPosetElem S.seed
theorem AssociatedPosetSeed.val_def (S : AssociatedPosetSeed α) : S.val = AssociatedPosetElem S.seed := rfl
/--
A partially-ordered set, associated to Rubin's proof.
Any element in that set is made up of a `seed`,
such that `val = AssociatedPosetElem seed` and `Set.Nonempty val`.
Actions on this set are first defined in terms of `AssociatedPosetSeed`,
as the proofs otherwise get hairy with `Exists.choose`.
--/
structure AssociatedPoset (α : Type _) [TopologicalSpace α] where
val : Set α
val_has_seed : ∃ po_seed : AssociatedPosetSeed α, po_seed.val = val
theorem AssociatedPoset.eq_iff_val_eq (S T : AssociatedPoset α) : S = T ↔ S.val = T.val := by
rw [mk.injEq]
def AssociatedPoset.fromSeed (seed : AssociatedPosetSeed α) : AssociatedPoset α := ⟨
seed.val,
⟨seed, seed.val_def⟩
noncomputable def AssociatedPoset.full_seed (S : AssociatedPoset α) : AssociatedPosetSeed α :=
(Exists.choose S.val_has_seed)
noncomputable def AssociatedPoset.seed (S : AssociatedPoset α) : Finset (HomeoGroup α) :=
S.full_seed.seed
@[simp]
theorem AssociatedPoset.full_seed_seed (S : AssociatedPoset α) : S.full_seed.seed = S.seed := rfl
@[simp]
theorem AssociatedPoset.fromSeed_val (seed : AssociatedPosetSeed α) :
(AssociatedPoset.fromSeed seed).val = seed.val :=
by
unfold fromSeed
simp
@[simp]
theorem regularInter_open (S : RegularInter α) : Set.Nonempty S.val := S.prop.left
theorem AssociatedPoset.val_from_seed (S : AssociatedPoset α) : AssociatedPosetElem S.seed = S.val := by
unfold seed full_seed
rw [<-AssociatedPosetSeed.val_def]
rw [Exists.choose_spec S.val_has_seed]
@[simp]
theorem regularInter_regular (S : RegularInter α) : Regular S.val := by
have ⟨seed, S_from_seed⟩ := S.prop.right
rw [S_from_seed]
unfold RegularInterElem
theorem AssociatedPoset.val_from_seed₂ (S : AssociatedPoset α) : S.full_seed.val = S.val := by
unfold full_seed
rw [AssociatedPosetSeed.val_def]
nth_rw 2 [<-AssociatedPoset.val_from_seed]
unfold seed full_seed
rfl
-- Allows one to prove properties of AssociatedPoset without jumping through `Exists.choose`-shaped hoops
theorem AssociatedPoset.prop_from_val {p : Set α → Prop}
(any_seed : ∀ po_seed : AssociatedPosetSeed α, p po_seed.val) :
∀ (S : AssociatedPoset α), p S.val :=
by
intro S
rw [<-AssociatedPoset.val_from_seed]
have res := any_seed S.full_seed
rw [AssociatedPoset.val_from_seed₂] at res
rw [AssociatedPoset.val_from_seed]
exact res
@[simp]
theorem AssociatedPosetSeed.nonempty (S : AssociatedPosetSeed α) : Set.Nonempty S.val := S.val_nonempty
@[simp]
theorem AssociatedPoset.nonempty : ∀ (S : AssociatedPoset α), Set.Nonempty S.val :=
AssociatedPoset.prop_from_val AssociatedPosetSeed.nonempty
@[simp]
theorem AssociatedPosetSeed.regular (S : AssociatedPosetSeed α) : Regular S.val := by
rw [S.val_def]
unfold AssociatedPosetElem
apply regular_sInter
· have set_decidable : DecidableEq (Set α) := Classical.typeDecidableEq (Set α)
let fin : Finset (Set α) := seed.image ((fun g => RegularSupport α g))
let fin : Finset (Set α) := S.seed.image ((fun g => RegularSupport α g))
apply Set.Finite.ofFinset fin
simp
@ -176,10 +254,116 @@ theorem regularInter_regular (S : RegularInter α) : Regular S.val := by
rw [<-Heq]
exact regularSupport_regular α g
-- TODO:
-- def RegularInter.smul : HomeoGroup α → RegularInter α -> RegularInter α
@[simp]
theorem AssociatedPoset.regular : ∀ (S : AssociatedPoset α), Regular S.val :=
AssociatedPoset.prop_from_val AssociatedPosetSeed.regular
lemma AssociatedPosetElem.mul_seed (seed : Finset (HomeoGroup α)) [DecidableEq (HomeoGroup α)] (f : HomeoGroup α):
AssociatedPosetElem (Finset.image (fun g => f * g * f⁻¹) seed) = f •'' AssociatedPosetElem seed :=
by
unfold AssociatedPosetElem
simp
conv => {
rhs
ext; lhs; ext x; ext; lhs
ext
rw [regularSupport_smulImage]
}
variable [DecidableEq (HomeoGroup α)]
/--
A `HomeoGroup α` group element `f` acts on an `AssociatedPosetSeed α` set `S`,
by mapping each element `g` of `S.seed` to `f * g * f⁻¹`
--/
instance homeoGroup_smul₂ : SMul (HomeoGroup α) (AssociatedPosetSeed α) where
smul := fun f S => ⟨
(Finset.image (fun g => f * g * f⁻¹) S.seed),
by
rw [AssociatedPosetElem.mul_seed]
simp
exact S.val_nonempty
theorem AssociatedPosetSeed.smul_seed (f : HomeoGroup α) (S : AssociatedPosetSeed α) :
(f • S).seed = (Finset.image (fun g => f * g * f⁻¹) S.seed) := rfl
theorem AssociatedPosetSeed.smul_val (f : HomeoGroup α) (S : AssociatedPosetSeed α) :
(f • S).val = AssociatedPosetElem (Finset.image (fun g => f * g * f⁻¹) S.seed) := rfl
theorem AssociatedPosetSeed.smul_val' (f : HomeoGroup α) (S : AssociatedPosetSeed α) :
(f • S).val = f •'' S.val :=
by
unfold val
rw [<-AssociatedPosetElem.mul_seed]
rw [AssociatedPosetSeed.smul_seed]
instance homeoGroup_mulAction₂ : MulAction (HomeoGroup α) (AssociatedPosetSeed α) where
one_smul := by
intro S
rw [AssociatedPosetSeed.eq_iff_seed_eq]
rw [AssociatedPosetSeed.smul_seed]
simp
mul_smul := by
intro f g S
rw [AssociatedPosetSeed.eq_iff_seed_eq]
repeat rw [AssociatedPosetSeed.smul_seed]
rw [Finset.image_image]
ext x
simp
group
def AssociatedPoset.smul_from_seed (f : HomeoGroup α) (S : AssociatedPoset α) : AssociatedPoset α :=
AssociatedPoset.fromSeed (f • S.full_seed)
-- TODO: use smulImage instead?
instance homeoGroup_smul₃ : SMul (HomeoGroup α) (AssociatedPoset α) where
smul := AssociatedPoset.smul_from_seed
theorem AssociatedPoset.smul_fromSeed (f : HomeoGroup α) (S : AssociatedPoset α) :
f • S = AssociatedPoset.fromSeed (f • S.full_seed) := rfl
theorem AssociatedPoset.smul_seed' (f : HomeoGroup α) (S : AssociatedPoset α) (seed : Finset (HomeoGroup α)) :
S.val = AssociatedPosetElem seed →
(f • S).val = AssociatedPosetElem (Finset.image (fun g => f * g * f⁻¹) seed) :=
by
intro S_val_eq
rw [AssociatedPoset.smul_fromSeed]
rw [AssociatedPoset.fromSeed_val]
rw [AssociatedPosetSeed.smul_val]
repeat rw [AssociatedPosetElem.mul_seed]
rw [<-S_val_eq]
rw [AssociatedPoset.full_seed_seed]
rw [<-AssociatedPoset.val_from_seed]
theorem AssociatedPoset.smul_seed (f : HomeoGroup α) (S : AssociatedPoset α) :
(f • S).val = AssociatedPosetElem (Finset.image (fun g => f * g * f⁻¹) S.seed) :=
by
apply AssociatedPoset.smul_seed'
symm
exact AssociatedPoset.val_from_seed S
theorem AssociatedPoset.smul_val (f : HomeoGroup α) (S : AssociatedPoset α) :
(f • S).val = f •'' S.val :=
by
rw [AssociatedPoset.smul_fromSeed]
rw [AssociatedPoset.fromSeed_val]
rw [<-AssociatedPoset.val_from_seed₂]
exact AssociatedPosetSeed.smul_val' _ _
instance homeoGroup_mulAction₃ : MulAction (HomeoGroup α) (AssociatedPoset α) where
one_smul := by
intro S
rw [AssociatedPoset.eq_iff_val_eq]
repeat rw [AssociatedPoset.smul_val]
rw [one_smulImage]
mul_smul := by
intro S f g
rw [AssociatedPoset.eq_iff_val_eq]
repeat rw [AssociatedPoset.smul_val]
rw [smulImage_mul]
-- instance homeoGroup_smul₂ : SMul (HomeoGroup α) (RegularInter α) where
-- smul := fun g x =>
end Rubin

@ -86,6 +86,7 @@ by
rw [mem_smulImage] at hy
simp at hy
simp
exact hy.left
· exact disjoint_V_W.symm

@ -63,7 +63,8 @@ theorem mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹ •'' U
exact msi
#align mem_inv_smul'' Rubin.mem_inv_smulImage
theorem mem_smulImage' {x : α} (g : G) {U : Set α} : x ∈ U ↔ g • x ∈ g •'' U :=
@[simp]
theorem mem_smulImage' {x : α} (g : G) {U : Set α} : g • x ∈ g •'' U ↔ x ∈ U :=
by
rw [mem_smulImage]
rw [<-mul_smul, mul_left_inv, one_smul]
@ -138,6 +139,7 @@ theorem smulImage_inter (g : G) {U V : Set α} : g •'' U ∩ V = (g •'' U)
Rubin.mem_smulImage, Set.mem_inter_iff]
#align smul''_inter Rubin.smulImage_inter
@[simp]
theorem smulImage_sUnion (g : G) {S : Set (Set α)} : g •'' (⋃₀ S) = ⋃₀ {g •'' T | T ∈ S} :=
by
ext x
@ -161,8 +163,8 @@ by
rw [<-mem_smulImage]
exact x_in_gT
theorem smulImage_sInter (g : G) {S : Set (Set α)} : g •'' (⋂₀ S) = ⋂₀ {g •'' T | T ∈ S} :=
by
@[simp]
theorem smulImage_sInter (g : G) {S : Set (Set α)} : g •'' (⋂₀ S) = ⋂₀ {g •'' T | T ∈ S} := by
ext x
constructor
· intro h
@ -180,6 +182,41 @@ by
simp at h
exact h T T_in_S
@[simp]
theorem smulImage_iInter {β : Type _} (g : G) (S : Set β) (f : β → Set α) :
g •'' (⋂ x ∈ S, f x) = ⋂ x ∈ S, g •'' (f x) :=
by
ext x
constructor
· intro h
rw [mem_smulImage] at h
simp
simp at h
intro i i_in_S
rw [mem_smulImage]
exact h i i_in_S
· intro h
simp at h
rw [mem_smulImage]
simp
intro i i_in_S
rw [<-mem_smulImage]
exact h i i_in_S
@[simp]
theorem smulImage_iInter_fin {β : Type _} (g : G) (S : Finset β) (f : β → Set α) :
g •'' (⋂ x ∈ S, f x) = ⋂ x ∈ S, g •'' (f x) :=
by
-- For some strange reason I can't use the above theorem
ext x
rw [mem_smulImage, Set.mem_iInter, Set.mem_iInter]
simp
conv => {
rhs
ext; ext
rw [mem_smulImage]
}
@[simp]
theorem smulImage_compl (g : G) (U : Set α) : (g •'' U)ᶜ = g •'' Uᶜ :=
by
@ -188,6 +225,19 @@ by
repeat rw [mem_smulImage]
rw [Set.mem_compl_iff]
@[simp]
theorem smulImage_nonempty (g: G) {U : Set α} : Set.Nonempty (g •'' U) ↔ Set.Nonempty U :=
by
constructor
· intro ⟨x, x_in_gU⟩
use g⁻¹•x
rw [<-mem_smulImage]
assumption
· intro ⟨x, x_in_U⟩
use g•x
simp
assumption
theorem smulImage_eq_inv_preimage {g : G} {U : Set α} : g •'' U = (g⁻¹ • ·) ⁻¹' U :=
by
ext

@ -194,7 +194,7 @@ by
have h₀ : ∀ x ∈ U, x ∉ Support α f := by
intro x x_in_U
unfold Commute SemiconjBy at h_comm
have gx_in_img := (mem_smulImage' g).mp x_in_U
have gx_in_img := (mem_smulImage' g).mpr x_in_U
have h₁ : g • f • x = g • x := by
have res := disjoint_not_mem₂ disj gx_in_img
rw [not_mem_support] at res

Loading…
Cancel
Save