|
|
|
@ -24,12 +24,13 @@ import Rubin.SmulImage
|
|
|
|
|
import Rubin.Support
|
|
|
|
|
import Rubin.Topology
|
|
|
|
|
import Rubin.RigidStabilizer
|
|
|
|
|
import Rubin.RigidStabilizerBasis
|
|
|
|
|
-- import Rubin.RigidStabilizerBasis
|
|
|
|
|
import Rubin.Period
|
|
|
|
|
import Rubin.AlgebraicDisjointness
|
|
|
|
|
import Rubin.RegularSupport
|
|
|
|
|
import Rubin.RegularSupportBasis
|
|
|
|
|
import Rubin.HomeoGroup
|
|
|
|
|
import Rubin.Filter
|
|
|
|
|
|
|
|
|
|
#align_import rubin
|
|
|
|
|
|
|
|
|
@ -694,43 +695,250 @@ by
|
|
|
|
|
repeat rw [<-proposition_2_1]
|
|
|
|
|
exact alg_disj
|
|
|
|
|
|
|
|
|
|
#check proposition_2_1
|
|
|
|
|
lemma rigidStabilizerInter_eq_algebraicCentralizerInter {S : Finset G} :
|
|
|
|
|
RigidStabilizerInter₀ α S = AlgebraicCentralizerInter₀ S :=
|
|
|
|
|
-- lemma remark_2_3' {f g : G} :
|
|
|
|
|
-- (AlgebraicCentralizer f) ⊓ (AlgebraicCentralizer g) ≠ ⊥ →
|
|
|
|
|
-- Set.Nonempty ((RegularSupport α f) ∩ (RegularSupport α g)) :=
|
|
|
|
|
-- by
|
|
|
|
|
-- intro alg_inter_neBot
|
|
|
|
|
-- repeat rw [proposition_2_1 (α := α)] at alg_inter_neBot
|
|
|
|
|
-- rw [ne_eq] at alg_inter_neBot
|
|
|
|
|
|
|
|
|
|
-- rw [rigidStabilizer_inter_bot_iff_regularSupport_disj] at alg_inter_neBot
|
|
|
|
|
-- rw [Set.not_disjoint_iff_nonempty_inter] at alg_inter_neBot
|
|
|
|
|
-- exact alg_inter_neBot
|
|
|
|
|
|
|
|
|
|
lemma rigidStabilizer_inter_eq_algebraicCentralizerInter {S : Finset G} :
|
|
|
|
|
G•[RegularSupport.FiniteInter α S] = AlgebraicCentralizerInter S :=
|
|
|
|
|
by
|
|
|
|
|
unfold RigidStabilizerInter₀
|
|
|
|
|
unfold AlgebraicCentralizerInter₀
|
|
|
|
|
unfold RegularSupport.FiniteInter
|
|
|
|
|
unfold AlgebraicCentralizerInter
|
|
|
|
|
rw [rigidStabilizer_iInter_regularSupport']
|
|
|
|
|
simp only [<-proposition_2_1]
|
|
|
|
|
-- conv => {
|
|
|
|
|
-- rhs
|
|
|
|
|
-- congr; intro; congr; intro
|
|
|
|
|
-- rw [proposition_2_1 (α := α)]
|
|
|
|
|
-- }
|
|
|
|
|
|
|
|
|
|
theorem rigidStabilizerBasis_eq_algebraicCentralizerBasis :
|
|
|
|
|
AlgebraicCentralizerBasis G = RigidStabilizerBasis G α :=
|
|
|
|
|
|
|
|
|
|
lemma regularSupportInter_nonEmpty_iff_neBot {S : Finset G} [Nonempty α]:
|
|
|
|
|
AlgebraicCentralizerInter S ≠ ⊥ ↔
|
|
|
|
|
Set.Nonempty (RegularSupport.FiniteInter α S) :=
|
|
|
|
|
by
|
|
|
|
|
apply le_antisymm <;> intro B B_mem
|
|
|
|
|
any_goals rw [RigidStabilizerBasis.mem_iff]
|
|
|
|
|
any_goals rw [AlgebraicCentralizerBasis.mem_iff]
|
|
|
|
|
any_goals rw [RigidStabilizerBasis.mem_iff] at B_mem
|
|
|
|
|
any_goals rw [AlgebraicCentralizerBasis.mem_iff] at B_mem
|
|
|
|
|
constructor
|
|
|
|
|
· rw [<-rigidStabilizer_inter_eq_algebraicCentralizerInter (α := α), ne_eq]
|
|
|
|
|
intro rist_neBot
|
|
|
|
|
by_contra eq_empty
|
|
|
|
|
rw [Set.not_nonempty_iff_eq_empty] at eq_empty
|
|
|
|
|
rw [eq_empty, rigidStabilizer_empty] at rist_neBot
|
|
|
|
|
exact rist_neBot rfl
|
|
|
|
|
· intro nonempty
|
|
|
|
|
intro eq_bot
|
|
|
|
|
rw [<-rigidStabilizer_inter_eq_algebraicCentralizerInter (α := α)] at eq_bot
|
|
|
|
|
rw [<-rigidStabilizer_empty (G := G) (α := α), rigidStabilizer_eq_iff] at eq_bot
|
|
|
|
|
· rw [eq_bot, Set.nonempty_iff_ne_empty] at nonempty
|
|
|
|
|
exact nonempty rfl
|
|
|
|
|
· apply RegularSupport.FiniteInter_regular
|
|
|
|
|
· simp
|
|
|
|
|
|
|
|
|
|
all_goals let ⟨⟨seed, B_ne_bot⟩, B_eq⟩ := B_mem
|
|
|
|
|
theorem AlgebraicCentralizerBasis.exists_rigidStabilizer_inv (H : Set G) [Nonempty α]:
|
|
|
|
|
∃ S ∈ RegularSupportBasis G α, H ∈ AlgebraicCentralizerBasis G → H = G•[S] :=
|
|
|
|
|
by
|
|
|
|
|
by_cases H_in_basis?: H ∈ AlgebraicCentralizerBasis G
|
|
|
|
|
swap
|
|
|
|
|
{
|
|
|
|
|
use Set.univ
|
|
|
|
|
constructor
|
|
|
|
|
rw [RegularSupportBasis.mem_iff]
|
|
|
|
|
constructor
|
|
|
|
|
· exact Set.univ_nonempty
|
|
|
|
|
· use ∅
|
|
|
|
|
unfold RegularSupport.FiniteInter
|
|
|
|
|
simp
|
|
|
|
|
· intro H_in_basis
|
|
|
|
|
exfalso
|
|
|
|
|
exact H_in_basis? H_in_basis
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
any_goals rw [RigidStabilizerBasis₀.val_def] at B_eq
|
|
|
|
|
any_goals rw [AlgebraicCentralizerBasis₀.val_def] at B_eq
|
|
|
|
|
all_goals simp at B_eq
|
|
|
|
|
all_goals rw [<-B_eq]
|
|
|
|
|
have ⟨H_ne_one, ⟨seed, H_eq⟩⟩ := (AlgebraicCentralizerBasis.mem_iff H).mp H_in_basis?
|
|
|
|
|
|
|
|
|
|
rw [<-rigidStabilizerInter_eq_algebraicCentralizerInter (α := α)] at B_ne_bot
|
|
|
|
|
swap
|
|
|
|
|
rw [rigidStabilizerInter_eq_algebraicCentralizerInter (α := α)] at B_ne_bot
|
|
|
|
|
rw [H_eq, <-Subgroup.coe_bot, ne_eq, SetLike.coe_set_eq, <-ne_eq] at H_ne_one
|
|
|
|
|
|
|
|
|
|
use RegularSupport.FiniteInter α seed
|
|
|
|
|
constructor
|
|
|
|
|
· rw [RegularSupportBasis.mem_iff]
|
|
|
|
|
constructor
|
|
|
|
|
· rw [<-regularSupportInter_nonEmpty_iff_neBot]
|
|
|
|
|
exact H_ne_one
|
|
|
|
|
· use seed
|
|
|
|
|
· intro _
|
|
|
|
|
|
|
|
|
|
all_goals use ⟨seed, B_ne_bot⟩
|
|
|
|
|
rw [rigidStabilizer_inter_eq_algebraicCentralizerInter]
|
|
|
|
|
exact H_eq
|
|
|
|
|
|
|
|
|
|
symm
|
|
|
|
|
all_goals apply rigidStabilizerInter_eq_algebraicCentralizerInter
|
|
|
|
|
theorem AlgebraicCentralizerBasis.mem_of_regularSupportBasis {S : Set α}
|
|
|
|
|
(S_in_basis : S ∈ RegularSupportBasis G α) :
|
|
|
|
|
(G•[S] : Set G) ∈ AlgebraicCentralizerBasis G :=
|
|
|
|
|
by
|
|
|
|
|
rw [AlgebraicCentralizerBasis.subgroup_mem_iff]
|
|
|
|
|
rw [RegularSupportBasis.mem_iff] at S_in_basis
|
|
|
|
|
let ⟨S_nonempty, ⟨seed, S_eq⟩⟩ := S_in_basis
|
|
|
|
|
|
|
|
|
|
have α_nonempty : Nonempty α := by
|
|
|
|
|
by_contra α_empty
|
|
|
|
|
rw [not_nonempty_iff] at α_empty
|
|
|
|
|
rw [Set.nonempty_iff_ne_empty] at S_nonempty
|
|
|
|
|
apply S_nonempty
|
|
|
|
|
exact Set.eq_empty_of_isEmpty S
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
· rw [S_eq, rigidStabilizer_inter_eq_algebraicCentralizerInter]
|
|
|
|
|
rw [regularSupportInter_nonEmpty_iff_neBot (α := α)]
|
|
|
|
|
rw [<-S_eq]
|
|
|
|
|
exact S_nonempty
|
|
|
|
|
· use seed
|
|
|
|
|
rw [S_eq]
|
|
|
|
|
exact rigidStabilizer_inter_eq_algebraicCentralizerInter
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem AlgebraicCentralizerBasis.eq_rist_image [Nonempty α]:
|
|
|
|
|
(fun S => (G•[S] : Set G)) '' RegularSupportBasis G α = AlgebraicCentralizerBasis G :=
|
|
|
|
|
by
|
|
|
|
|
ext H
|
|
|
|
|
constructor
|
|
|
|
|
· simp
|
|
|
|
|
intro S S_in_basis H_eq
|
|
|
|
|
rw [<-H_eq]
|
|
|
|
|
apply mem_of_regularSupportBasis S_in_basis
|
|
|
|
|
· intro H_in_basis
|
|
|
|
|
simp
|
|
|
|
|
let ⟨S, S_in_rsupp, H_eq⟩ := AlgebraicCentralizerBasis.exists_rigidStabilizer_inv (α := α) H
|
|
|
|
|
specialize H_eq H_in_basis
|
|
|
|
|
symm at H_eq
|
|
|
|
|
use S
|
|
|
|
|
|
|
|
|
|
noncomputable def rigidStabilizer_inv [Nonempty α] (H : Set G) : Set α :=
|
|
|
|
|
(AlgebraicCentralizerBasis.exists_rigidStabilizer_inv H).choose
|
|
|
|
|
|
|
|
|
|
theorem rigidStabilizer_inv_eq [Nonempty α] {H : Set G} (H_in_basis : H ∈ AlgebraicCentralizerBasis G) :
|
|
|
|
|
H = G•[rigidStabilizer_inv (α := α) H] :=
|
|
|
|
|
by
|
|
|
|
|
have spec := (AlgebraicCentralizerBasis.exists_rigidStabilizer_inv (α := α) H).choose_spec
|
|
|
|
|
exact spec.right H_in_basis
|
|
|
|
|
|
|
|
|
|
theorem rigidStabilizer_in_basis [Nonempty α] (H : Set G) :
|
|
|
|
|
rigidStabilizer_inv (α := α) H ∈ RegularSupportBasis G α :=
|
|
|
|
|
by
|
|
|
|
|
have spec := (AlgebraicCentralizerBasis.exists_rigidStabilizer_inv (α := α) H).choose_spec
|
|
|
|
|
exact spec.left
|
|
|
|
|
|
|
|
|
|
theorem rigidStabilizer_inv_eq' [Nonempty α] {S : Set α} (S_in_basis : S ∈ RegularSupportBasis G α) :
|
|
|
|
|
rigidStabilizer_inv (α := α) (G := G) G•[S] = S :=
|
|
|
|
|
by
|
|
|
|
|
have GS_in_basis : (G•[S] : Set G) ∈ AlgebraicCentralizerBasis G := by
|
|
|
|
|
exact AlgebraicCentralizerBasis.mem_of_regularSupportBasis S_in_basis
|
|
|
|
|
|
|
|
|
|
have eq := rigidStabilizer_inv_eq GS_in_basis (α := α)
|
|
|
|
|
rw [SetLike.coe_set_eq, rigidStabilizer_eq_iff] at eq
|
|
|
|
|
· exact eq.symm
|
|
|
|
|
· exact RegularSupportBasis.regular S_in_basis
|
|
|
|
|
· exact RegularSupportBasis.regular (rigidStabilizer_in_basis _)
|
|
|
|
|
|
|
|
|
|
variable [Nonempty α] [HasNoIsolatedPoints α] [LocallyDense G α]
|
|
|
|
|
|
|
|
|
|
noncomputable def RigidStabilizer.order_iso_on (G α : Type _) [Group G] [Nonempty α] [TopologicalSpace α] [T2Space α]
|
|
|
|
|
[MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α]
|
|
|
|
|
[HasNoIsolatedPoints α] [LocallyDense G α] : OrderIsoOn (Set α) (Set G) (RegularSupportBasis G α)
|
|
|
|
|
where
|
|
|
|
|
toFun := fun S => G•[S]
|
|
|
|
|
invFun := fun H => rigidStabilizer_inv (α := α) H
|
|
|
|
|
|
|
|
|
|
leftInv_on := by
|
|
|
|
|
intro S S_in_basis
|
|
|
|
|
simp
|
|
|
|
|
exact rigidStabilizer_inv_eq' S_in_basis
|
|
|
|
|
|
|
|
|
|
rightInv_on := by
|
|
|
|
|
intro H H_in_basis
|
|
|
|
|
simp
|
|
|
|
|
simp at H_in_basis
|
|
|
|
|
symm
|
|
|
|
|
exact rigidStabilizer_inv_eq H_in_basis
|
|
|
|
|
|
|
|
|
|
toFun_doubleMonotone := by
|
|
|
|
|
intro S S_in_basis T T_in_basis
|
|
|
|
|
simp
|
|
|
|
|
apply rigidStabilizer_subset_iff G (RegularSupportBasis.regular S_in_basis) (RegularSupportBasis.regular T_in_basis)
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem RigidStabilizer.order_iso_on_toFun:
|
|
|
|
|
(RigidStabilizer.order_iso_on G α).toFun = (fun S => (G•[S] : Set G)) :=
|
|
|
|
|
by
|
|
|
|
|
simp [order_iso_on]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem RigidStabilizer.order_iso_on_invFun:
|
|
|
|
|
(RigidStabilizer.order_iso_on G α).invFun = (fun S => rigidStabilizer_inv (α := α) S) :=
|
|
|
|
|
by
|
|
|
|
|
simp [order_iso_on]
|
|
|
|
|
|
|
|
|
|
noncomputable def RigidStabilizer.inv_order_iso_on (G α : Type _) [Group G] [Nonempty α] [TopologicalSpace α] [T2Space α]
|
|
|
|
|
[MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α]
|
|
|
|
|
[HasNoIsolatedPoints α] [LocallyDense G α] : OrderIsoOn (Set G) (Set α) (AlgebraicCentralizerBasis G) :=
|
|
|
|
|
(RigidStabilizer.order_iso_on G α).inv.mk_of_subset
|
|
|
|
|
(subset_of_eq (AlgebraicCentralizerBasis.eq_rist_image (α := α) (G := G)).symm)
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem RigidStabilizer.inv_order_iso_on_toFun:
|
|
|
|
|
(RigidStabilizer.inv_order_iso_on G α).toFun = (fun S => rigidStabilizer_inv (α := α) S) :=
|
|
|
|
|
by
|
|
|
|
|
simp [inv_order_iso_on, order_iso_on]
|
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem RigidStabilizer.inv_order_iso_on_invFun:
|
|
|
|
|
(RigidStabilizer.inv_order_iso_on G α).invFun = (fun S => (G•[S] : Set G)) :=
|
|
|
|
|
by
|
|
|
|
|
simp [inv_order_iso_on, order_iso_on]
|
|
|
|
|
|
|
|
|
|
-- TODO: mark simp theorems as local
|
|
|
|
|
@[simp]
|
|
|
|
|
theorem RegularSupportBasis.eq_inv_rist_image:
|
|
|
|
|
(fun H => rigidStabilizer_inv (α := α) H) '' AlgebraicCentralizerBasis G = RegularSupportBasis G α :=
|
|
|
|
|
by
|
|
|
|
|
rw [<-AlgebraicCentralizerBasis.eq_rist_image (α := α) (G := G)]
|
|
|
|
|
rw [Set.image_image]
|
|
|
|
|
nth_rw 2 [<-OrderIsoOn.leftInv_image (RigidStabilizer.order_iso_on G α)]
|
|
|
|
|
rw [Function.comp_def]
|
|
|
|
|
rw [RigidStabilizer.order_iso_on]
|
|
|
|
|
|
|
|
|
|
lemma RigidStabilizer_doubleMonotone : DoubleMonotoneOn (fun S => G•[S]) (RegularSupportBasis G α) := by
|
|
|
|
|
have res := (RigidStabilizer.order_iso_on G α).toFun_doubleMonotone
|
|
|
|
|
simp at res
|
|
|
|
|
exact res
|
|
|
|
|
|
|
|
|
|
lemma RigidStabilizer_inv_doubleMonotone : DoubleMonotoneOn (fun S => rigidStabilizer_inv (α := α) S) (AlgebraicCentralizerBasis G) := by
|
|
|
|
|
have res := (RigidStabilizer.order_iso_on G α).invFun_doubleMonotone
|
|
|
|
|
simp at res
|
|
|
|
|
exact res
|
|
|
|
|
|
|
|
|
|
lemma RigidStabilizer_rightInv {U : Set G} (U_in_basis : U ∈ AlgebraicCentralizerBasis G) :
|
|
|
|
|
G•[rigidStabilizer_inv (α := α) U] = U :=
|
|
|
|
|
by
|
|
|
|
|
have res := (RigidStabilizer.order_iso_on G α).rightInv_on U
|
|
|
|
|
simp at res
|
|
|
|
|
exact res U_in_basis
|
|
|
|
|
|
|
|
|
|
lemma RigidStabilizer_leftInv {U : Set α} (U_in_basis : U ∈ RegularSupportBasis G α) :
|
|
|
|
|
rigidStabilizer_inv (α := α) (G•[U] : Set G) = U :=
|
|
|
|
|
by
|
|
|
|
|
have res := (RigidStabilizer.order_iso_on G α).leftInv_on U
|
|
|
|
|
simp at res
|
|
|
|
|
exact res U_in_basis
|
|
|
|
|
|
|
|
|
|
theorem AlgebraicCentralizerBasis.mem_of_regularSupportBasis_inv {S : Set G}
|
|
|
|
|
(S_in_basis : rigidStabilizer_inv (α := α) S ∈ RegularSupportBasis G α) :
|
|
|
|
|
S ∈ AlgebraicCentralizerBasis G :=
|
|
|
|
|
by
|
|
|
|
|
let ⟨T, T_in_basis, T_eq⟩ := (RegularSupportBasis.eq_inv_rist_image (G := G) (α := α)).symm ▸ S_in_basis
|
|
|
|
|
simp only at T_eq
|
|
|
|
|
|
|
|
|
|
-- Note: currently not provable, we need to add another requirement to rigidStabilizer_inv
|
|
|
|
|
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
end RegularSupport
|
|
|
|
|
|
|
|
|
@ -1020,8 +1228,24 @@ by
|
|
|
|
|
exact proposition_3_5_1 U_in_basis (F : Filter α)
|
|
|
|
|
· exact proposition_3_5_2 (F : Filter α)
|
|
|
|
|
|
|
|
|
|
theorem proposition_3_5' {U : Set α} (U_in_basis : U ∈ RegularSupportBasis G α)
|
|
|
|
|
(F : UltrafilterInBasis (RegularSupportBasis G α)):
|
|
|
|
|
(∃ p ∈ U, ClusterPt p F)
|
|
|
|
|
↔ ∃ V : RegularSupportBasis G α, V.val ⊆ U ∧ RSuppSubsets G V.val ⊆ RSuppOrbit F G•[U] :=
|
|
|
|
|
by
|
|
|
|
|
constructor
|
|
|
|
|
· simp only [
|
|
|
|
|
F.clusterPt_iff_le_nhds
|
|
|
|
|
(RegularSupportBasis.isBasis G α)
|
|
|
|
|
(RegularSupportBasis.closed_inter G α)
|
|
|
|
|
]
|
|
|
|
|
exact proposition_3_5_1 U_in_basis (F : Filter α)
|
|
|
|
|
· exact proposition_3_5_2 (F : Filter α)
|
|
|
|
|
|
|
|
|
|
end Ultrafilter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/-
|
|
|
|
|
variable {G α : Type _}
|
|
|
|
|
variable [Group G]
|
|
|
|
|
|
|
|
|
@ -1600,11 +1824,188 @@ theorem rubin' (hα : RubinAction G α) : EquivariantHomeomorph G α (RubinSpace
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
end Convert
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
section RubinFilter
|
|
|
|
|
|
|
|
|
|
variable {G : Type _} [Group G]
|
|
|
|
|
variable {α : Type _} [Nonempty α] [TopologicalSpace α] [HasNoIsolatedPoints α] [T2Space α] [LocallyCompactSpace α]
|
|
|
|
|
variable [MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α] [LocallyDense G α]
|
|
|
|
|
|
|
|
|
|
def AlgebraicSubsets (V : Set G) : Set (Set G) :=
|
|
|
|
|
{W ∈ AlgebraicCentralizerBasis G | W ⊆ V}
|
|
|
|
|
|
|
|
|
|
def AlgebraicOrbit (F : Filter G) (U : Set G) : Set (Set G) :=
|
|
|
|
|
{ (fun h => g * h * g⁻¹) '' W | (g ∈ U) (W ∈ F.sets ∩ AlgebraicCentralizerBasis G) }
|
|
|
|
|
|
|
|
|
|
theorem AlgebraicOrbit.mem_iff (F : Filter G) (U : Set G) (S : Set G):
|
|
|
|
|
S ∈ AlgebraicOrbit F U ↔ ∃ g ∈ U, ∃ W ∈ F, W ∈ AlgebraicCentralizerBasis G ∧ S = (fun h => g * h * g⁻¹) '' W :=
|
|
|
|
|
by
|
|
|
|
|
simp [AlgebraicOrbit]
|
|
|
|
|
simp only [and_assoc, eq_comm]
|
|
|
|
|
|
|
|
|
|
structure RubinFilter (G : Type _) [Group G] :=
|
|
|
|
|
filter : UltrafilterInBasis (AlgebraicCentralizerBasis G)
|
|
|
|
|
|
|
|
|
|
-- Topology can be generated from the disconnectedness of the filters
|
|
|
|
|
converges : ∃ V ∈ AlgebraicCentralizerBasis G, AlgebraicSubsets V ⊆ AlgebraicOrbit filter Set.univ
|
|
|
|
|
|
|
|
|
|
lemma RegularSupportBasis.empty_not_mem' : ∅ ∉ (RigidStabilizer.inv_order_iso_on G α).toFun '' AlgebraicCentralizerBasis G := by
|
|
|
|
|
simp
|
|
|
|
|
exact RegularSupportBasis.empty_not_mem _ _
|
|
|
|
|
|
|
|
|
|
lemma AlgebraicCentralizerBasis.empty_not_mem' : ∅ ∉ (RigidStabilizer.order_iso_on G α).toFun '' RegularSupportBasis G α := by
|
|
|
|
|
unfold RigidStabilizer.order_iso_on
|
|
|
|
|
rw [AlgebraicCentralizerBasis.eq_rist_image]
|
|
|
|
|
exact AlgebraicCentralizerBasis.empty_not_mem
|
|
|
|
|
|
|
|
|
|
def RubinFilter.map (F : RubinFilter G) (α : Type _)
|
|
|
|
|
[TopologicalSpace α] [T2Space α] [Nonempty α] [HasNoIsolatedPoints α]
|
|
|
|
|
[MulAction G α] [ContinuousConstSMul G α] [FaithfulSMul G α] [LocallyDense G α] : UltrafilterInBasis (RegularSupportBasis G α) :=
|
|
|
|
|
(
|
|
|
|
|
F.filter.map_basis
|
|
|
|
|
AlgebraicCentralizerBasis.empty_not_mem
|
|
|
|
|
(RigidStabilizer.inv_order_iso_on G α)
|
|
|
|
|
RegularSupportBasis.empty_not_mem'
|
|
|
|
|
).cast (by simp)
|
|
|
|
|
|
|
|
|
|
def IsRubinFilterOf (A : UltrafilterInBasis (RegularSupportBasis G α)) (B : UltrafilterInBasis (AlgebraicCentralizerBasis G)) : Prop :=
|
|
|
|
|
∀ U ∈ RegularSupportBasis G α, U ∈ A ↔ (G•[U] : Set G) ∈ B
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.map_isRubinFilterOf (F : RubinFilter G) :
|
|
|
|
|
IsRubinFilterOf (F.map α) F.filter :=
|
|
|
|
|
by
|
|
|
|
|
intro U U_in_basis
|
|
|
|
|
unfold map
|
|
|
|
|
simp
|
|
|
|
|
have ⟨U', U'_in_basis, U'_eq⟩ := (RegularSupportBasis.eq_inv_rist_image (G := G) (α := α)).symm ▸ U_in_basis
|
|
|
|
|
simp only at U'_eq
|
|
|
|
|
rw [<-U'_eq]
|
|
|
|
|
rw [Filter.InBasis.map_mem_map_basis_of_basis_set _ RigidStabilizer_inv_doubleMonotone F.filter.in_basis U'_in_basis]
|
|
|
|
|
rw [RigidStabilizer_rightInv U'_in_basis]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
theorem RubinFilter.from_isRubinFilterOf' (F : UltrafilterInBasis (RegularSupportBasis G α)) :
|
|
|
|
|
IsRubinFilterOf F ((F.map_basis
|
|
|
|
|
(RegularSupportBasis.empty_not_mem G α)
|
|
|
|
|
(RigidStabilizer.order_iso_on G α)
|
|
|
|
|
AlgebraicCentralizerBasis.empty_not_mem'
|
|
|
|
|
).cast (by simp)) :=
|
|
|
|
|
by
|
|
|
|
|
intro U U_in_basis
|
|
|
|
|
simp
|
|
|
|
|
rw [Filter.InBasis.map_mem_map_basis_of_basis_set _ RigidStabilizer_doubleMonotone F.in_basis U_in_basis]
|
|
|
|
|
rfl
|
|
|
|
|
|
|
|
|
|
theorem IsRubinFilterOf.mem_inv {A : UltrafilterInBasis (RegularSupportBasis G α)}
|
|
|
|
|
{B : UltrafilterInBasis (AlgebraicCentralizerBasis G)}
|
|
|
|
|
(filter_of : IsRubinFilterOf A B) {U : Set G} (U_in_basis : U ∈ AlgebraicCentralizerBasis G):
|
|
|
|
|
U ∈ B ↔ rigidStabilizer_inv U ∈ A :=
|
|
|
|
|
by
|
|
|
|
|
rw [<-AlgebraicCentralizerBasis.eq_rist_image (α := α)] at U_in_basis
|
|
|
|
|
let ⟨V, V_in_basis, V_eq⟩ := U_in_basis
|
|
|
|
|
rw [<-V_eq, RigidStabilizer_leftInv V_in_basis]
|
|
|
|
|
symm
|
|
|
|
|
exact filter_of V V_in_basis
|
|
|
|
|
|
|
|
|
|
theorem IsRubinFilterOf.mem_inter_inv {A : UltrafilterInBasis (RegularSupportBasis G α)}
|
|
|
|
|
{B : UltrafilterInBasis (AlgebraicCentralizerBasis G)}
|
|
|
|
|
(filter_of : IsRubinFilterOf A B) (U : Set G):
|
|
|
|
|
U ∈ B.filter.sets ∩ AlgebraicCentralizerBasis G ↔ rigidStabilizer_inv U ∈ A.filter.sets ∩ RegularSupportBasis G α :=
|
|
|
|
|
by
|
|
|
|
|
constructor
|
|
|
|
|
· intro ⟨U_in_filter, U_in_basis⟩
|
|
|
|
|
constructor
|
|
|
|
|
simp
|
|
|
|
|
rw [<-filter_of.mem_inv U_in_basis]
|
|
|
|
|
exact U_in_filter
|
|
|
|
|
exact rigidStabilizer_in_basis U
|
|
|
|
|
· intro ⟨iU_in_filter, iU_in_basis⟩
|
|
|
|
|
have U_in_basis := AlgebraicCentralizerBasis.mem_of_regularSupportBasis_inv iU_in_basis
|
|
|
|
|
constructor
|
|
|
|
|
· simp
|
|
|
|
|
rw [filter_of.mem_inv U_in_basis]
|
|
|
|
|
exact iU_in_filter
|
|
|
|
|
· assumption
|
|
|
|
|
|
|
|
|
|
theorem IsRubinFilterOf.subsets_ss_orbit {A : UltrafilterInBasis (RegularSupportBasis G α)}
|
|
|
|
|
{B : UltrafilterInBasis (AlgebraicCentralizerBasis G)}
|
|
|
|
|
(filter_of : IsRubinFilterOf A B)
|
|
|
|
|
{V : Set α} (V_in_basis : V ∈ RegularSupportBasis G α)
|
|
|
|
|
{W : Set α} (W_in_basis : W ∈ RegularSupportBasis G α) :
|
|
|
|
|
RSuppSubsets G W ⊆ RSuppOrbit A G•[V] ↔ AlgebraicSubsets (G•[W]) ⊆ AlgebraicOrbit B.filter G•[V] :=
|
|
|
|
|
by
|
|
|
|
|
constructor
|
|
|
|
|
· intro rsupp_ss
|
|
|
|
|
unfold AlgebraicSubsets AlgebraicOrbit
|
|
|
|
|
intro U ⟨U_in_basis, U_ss_GW⟩
|
|
|
|
|
let U' := rigidStabilizer_inv (α := α) U
|
|
|
|
|
have U'_in_basis : U' ∈ RegularSupportBasis G α := rigidStabilizer_in_basis U
|
|
|
|
|
have U'_ss_W : U' ⊆ W := by
|
|
|
|
|
rw [rigidStabilizer_subset_iff (G := G) (RegularSupportBasis.regular U'_in_basis) (RegularSupportBasis.regular W_in_basis)]
|
|
|
|
|
unfold_let
|
|
|
|
|
rw [<-SetLike.coe_subset_coe]
|
|
|
|
|
rw [RigidStabilizer_rightInv (G := G) (α := α) U_in_basis]
|
|
|
|
|
assumption
|
|
|
|
|
let ⟨g, g_in_GV, ⟨W, W_in_A, gW_eq_U⟩⟩ := rsupp_ss ⟨U'_in_basis, U'_ss_W⟩
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
{
|
|
|
|
|
simp
|
|
|
|
|
exact g_in_GV
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
have dec_eq : DecidableEq G := Classical.typeDecidableEq _
|
|
|
|
|
|
|
|
|
|
have W_in_basis : W ∈ RegularSupportBasis G α := by
|
|
|
|
|
rw [smulImage_inv] at gW_eq_U
|
|
|
|
|
rw [gW_eq_U]
|
|
|
|
|
apply RegularSupportBasis.smulImage_in_basis
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
use G•[W]
|
|
|
|
|
rw [filter_of.mem_inter_inv]
|
|
|
|
|
rw [RigidStabilizer_leftInv (G := G) (α := α) W_in_basis]
|
|
|
|
|
refine ⟨⟨W_in_A, W_in_basis⟩, ?W_eq_U⟩
|
|
|
|
|
rw [rigidStabilizer_conj_image_eq, gW_eq_U]
|
|
|
|
|
unfold_let
|
|
|
|
|
exact RigidStabilizer_rightInv U_in_basis
|
|
|
|
|
sorry
|
|
|
|
|
|
|
|
|
|
def RubinFilter.from (F : UltrafilterInBasis (RegularSupportBasis G α)) (F_converges : ∃ p : α, F ≤ nhds p) : RubinFilter G where
|
|
|
|
|
filter := (F.map_basis
|
|
|
|
|
(RegularSupportBasis.empty_not_mem G α)
|
|
|
|
|
(RigidStabilizer.order_iso_on G α)
|
|
|
|
|
AlgebraicCentralizerBasis.empty_not_mem'
|
|
|
|
|
).cast (by simp)
|
|
|
|
|
|
|
|
|
|
converges := by
|
|
|
|
|
let ⟨p, F_le_nhds⟩ := F_converges
|
|
|
|
|
|
|
|
|
|
have F_clusterPt : ClusterPt p F := by
|
|
|
|
|
rw [UltrafilterInBasis.clusterPt_iff_le_nhds]
|
|
|
|
|
· assumption
|
|
|
|
|
· exact RegularSupportBasis.isBasis G α
|
|
|
|
|
· exact RegularSupportBasis.closed_inter G α
|
|
|
|
|
|
|
|
|
|
have ⟨⟨W, W_in_basis⟩, W_ss_V, W_subsets_ss_GV_orbit⟩ := (proposition_3_5' (RegularSupportBasis.univ_mem G α) F).mp ⟨p, (Set.mem_univ p), F_clusterPt⟩
|
|
|
|
|
simp only at W_ss_V
|
|
|
|
|
simp only at W_subsets_ss_GV_orbit
|
|
|
|
|
|
|
|
|
|
use G•[W]
|
|
|
|
|
constructor
|
|
|
|
|
{
|
|
|
|
|
apply AlgebraicCentralizerBasis.mem_of_regularSupportBasis W_in_basis
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rw [<-Subgroup.coe_top, <-rigidStabilizer_univ (α := α) (G := G)]
|
|
|
|
|
rw [<-(RubinFilter.from_isRubinFilterOf' F).subsets_ss_orbit (RegularSupportBasis.univ_mem G α) W_in_basis]
|
|
|
|
|
assumption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end RubinFilter
|
|
|
|
|
|
|
|
|
|
/-
|
|
|
|
|
variable {β : Type _}
|
|
|
|
|
variable [TopologicalSpace β] [MulAction G β] [ContinuousConstSMul G β]
|
|
|
|
|
|
|
|
|
@ -1614,6 +2015,7 @@ variable [TopologicalSpace β] [MulAction G β] [ContinuousConstSMul G β]
|
|
|
|
|
theorem rubin (hα : RubinAction G α) (hβ : RubinAction G β) : EquivariantHomeomorph G α β := by
|
|
|
|
|
-- by composing rubin' hα
|
|
|
|
|
sorry
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
|
|
end Rubin
|
|
|
|
|
|
|
|
|
|