Working equiv for RubinSpace

laurent-lost-commits
Shad Amethyst 5 months ago
parent 6b2f21fec8
commit 7c5ce7e631

File diff suppressed because it is too large Load Diff

@ -388,10 +388,7 @@ theorem smul_injective_within_period {g : G} {p : α} {n : }
(period_eq_n : Period.period p g = n) :
Function.Injective (fun (i : Fin n) => g ^ (i : ) • p) :=
by
have zpow_fix : (fun (i : Fin n) => g ^ (i : ) • p) = (fun (i : Fin n) => g ^ (i : ) • p) := by
ext x
simp
rw [zpow_fix]
simp only [<-zpow_coe_nat]
apply moves_inj
intro k one_le_k k_lt_n
@ -434,20 +431,16 @@ by
· intro ⟨y, y_disj, x_eq⟩
use g * y * g⁻¹
rw [<-gxg12_eq]
refine ⟨?disj, x_eq⟩
exact y_disj.conj g
exact ⟨y_disj.conj g, x_eq⟩
· intro ⟨y, y_disj, x_eq⟩
use g⁻¹ * y * g
constructor
· rw [(by group : f = g⁻¹ * (g * f * g⁻¹) * g⁻¹⁻¹)]
nth_rw 6 [<-inv_inv g]
exact y_disj.conj g⁻¹
· convert y_disj.conj g⁻¹ using 1
all_goals group
· nth_rw 3 [<-inv_inv g]
simp only [conj_pow]
rw [x_eq]
group
group at x_eq
exact x_eq
@[simp]
theorem AlgebraicCentralizer.conj (f g : G) :

@ -292,6 +292,21 @@ by
any_goals apply B_ss_C
all_goals assumption
theorem Filter.InBasis.inf_eq_bot_iff {F G : Filter α} (F_in_basis : F.InBasis B) (G_in_basis : G.InBasis B) :
F ⊓ G = ⊥ ↔ ∃ U ∈ B, ∃ V ∈ B, U ∈ F ∧ V ∈ G ∧ U ∩ V = ∅ :=
by
rw [Filter.inf_eq_bot_iff]
constructor
· intro ⟨U, U_in_F, V, V_in_G, UV_empty⟩
let ⟨U', U'_in_F, U'_in_B, U'_ss_U⟩ := F_in_basis U U_in_F
let ⟨V', V'_in_G, V'_in_B, V'_ss_V⟩ := G_in_basis V V_in_G
refine ⟨U', U'_in_B, V', V'_in_B, U'_in_F, V'_in_G, ?inter_empty⟩
apply Set.eq_empty_of_subset_empty
apply subset_trans _ (subset_of_eq UV_empty)
exact Set.inter_subset_inter U'_ss_U V'_ss_V
· intro ⟨U, _, V, _, U_in_F, V_in_G, UV_empty⟩
exact ⟨U, U_in_F, V, V_in_G, UV_empty⟩
def Filter.InBasis.basis {α : Type _} (F : Filter α) (B : Set (Set α)): Set (Set α) :=
{ S : Set α | S ∈ F ∧ S ∈ B }
@ -1129,6 +1144,23 @@ by
apply U.ultra
all_goals assumption
theorem UltrafilterInBasis.eq_of_le (U U' : UltrafilterInBasis B) :
U.filter ≤ U'.filter → U = U' :=
by
intro U_le_U'
symm
rw [mk.injEq]
exact unique _ U.in_basis U_le_U'
theorem UltrafilterInBasis.le_of_basis_sets (U U' : UltrafilterInBasis B) :
(∀ S : Set α, S ∈ B → S ∈ U' → S ∈ U) → U.filter ≤ U'.filter :=
by
intro h
intro S S_in_U'
let ⟨T, T_in_B, T_in_U', T_ss_S⟩ := U'.in_basis _ S_in_U'
apply Filter.mem_of_superset _ T_ss_S
apply h <;> assumption
theorem UltrafilterInBasis.le_of_inf_neBot (U : UltrafilterInBasis B)
(B_closed : ∀ (b1 b2 : Set α), b1 ∈ B → b2 ∈ B → Set.Nonempty (b1 ∩ b2) → b1 ∩ b2 ∈ B)
{F : Filter α} (F_in_basis : F.InBasis B)

@ -147,6 +147,7 @@ by
repeat rw [rigidStabilizer_support]
rw [Set.subset_inter_iff]
@[simp]
theorem rigidStabilizer_empty (G α: Type _) [Group G] [MulAction G α] [FaithfulSMul G α]:
G•[(∅ : Set α)] = ⊥ :=
by
@ -159,6 +160,7 @@ by
rw [f_in_rist x (Set.not_mem_empty x)]
simp
@[simp]
theorem rigidStabilizer_univ (G α: Type _) [Group G] [MulAction G α]:
G•[(Set.univ : Set α)] = :=
by

Loading…
Cancel
Save