Remove namespace that conflicted with #aligns

pull/1/head
Shad Amethyst 6 months ago
parent 7806ecb35e
commit 80349c3496

@ -3,7 +3,6 @@ Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Laurent Bartholdi
-/
-- import Mathbin.Tactic.Default
import Mathlib.Data.Finset.Basic
import Mathlib.Data.Finset.Card
import Mathlib.Data.Fintype.Perm
@ -19,10 +18,11 @@ import Mathlib.Topology.Homeomorph
#align_import rubin
-- TODO: remove
--@[simp]
theorem Rubin.GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} :
g • h • x = (g * h) • x :=
(hMul_smul g h x).symm
smul_smul g h x
#align smul_smul' Rubin.GroupActionExt.smul_smul'
--@[simp]
@ -116,29 +116,27 @@ add_tactic_doc
end GroupActionTactic
namespace Rubin
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
example (G α : Type _) [Group G] (a b c : G) [MulAction G α] (x : α) :
⁅a * b, c⁆ • x = (a * ⁅b, c⁆ * a⁻¹ * ⁅a, c⁆) • x := by
trace
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]"
theorem Equiv.congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y :=
theorem Rubin.equiv_congr_ne {ι ι' : Type _} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y :=
by
intro x_ne_y
by_contra h
apply x_ne_y
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
#align Rubin.equiv.congr_ne Rubin.Equiv.congr_ne
#align equiv.congr_ne Rubin.equiv_congr_ne
-- this definitely should be added to mathlib!
@[simp, to_additive]
theorem Subgroup.mk_smul {G α : Type _} [Group G] [MulAction G α] {S : Subgroup G} {g : G}
(hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
theorem Rubin.GroupActionExt.subgroup_mk_smul {G α : Type _} [Group G] [MulAction G α]
{S : Subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
rfl
#align Rubin.subgroup.mk_smul Rubin.Subgroup.mk_smul
#align Rubin.subgroup.mk_vadd Rubin.Subgroup.mk_vadd
#align subgroup.mk_smul Rubin.GroupActionExt.subgroup_mk_smul
#align add_subgroup.mk_vadd AddSubgroup.mk_vadd
----------------------------------------------------------------
section Rubin
@ -148,14 +146,14 @@ variable {G α β : Type _} [Group G]
----------------------------------------------------------------
section Groups
theorem bracket_hMul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
#align Rubin.bracket_mul Rubin.bracket_hMul
theorem Rubin.bracket_mul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
#align bracket_mul Rubin.bracket_mul
def IsAlgebraicallyDisjoint (f g : G) :=
def Rubin.is_algebraically_disjoint (f g : G) :=
∀ h : G,
¬Commute f h →
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
#align Rubin.is_algebraically_disjoint Rubin.IsAlgebraicallyDisjoint
#align is_algebraically_disjoint Rubin.is_algebraically_disjoint
end Groups
@ -164,11 +162,8 @@ section Actions
variable [MulAction G α]
/- warning: Rubin.orbit_bot clashes with orbit_bot -> Rubin.orbit_bot
Case conversion may be inaccurate. Consider using '#align Rubin.orbit_bot Rubin.orbit_botₓ'. -/
#print Rubin.orbit_bot /-
@[simp]
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
theorem Rubin.orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
by
ext1
@ -178,32 +173,31 @@ theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
rw [← g_to_x, Set.mem_singleton_iff, Rubin.GroupActionExt.subgroup_mk_smul]
exact (subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
exact fun h => ⟨1, Eq.trans (one_smul _ p) (set.mem_singleton_iff.mp h).symm⟩
#align Rubin.orbit_bot Rubin.orbit_bot
-/
#align orbit_bot Rubin.orbit_bot
--------------------------------
section Smul''
theorem smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
theorem Rubin.GroupActionExt.smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
congr_arg ((· • ·) g) h
#align Rubin.smul_congr Rubin.smul_congr
#align smul_congr Rubin.GroupActionExt.smul_congr
theorem smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
⟨fun h => (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
(smul_congr g h).symm.trans (smul_inv_smul g x)⟩
#align Rubin.smul_eq_iff_inv_smul_eq Rubin.smul_eq_iff_inv_smul_eq
theorem Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
⟨fun h => (Rubin.GroupActionExt.smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
(Rubin.GroupActionExt.smul_congr g h).symm.trans (smul_inv_smul g x)⟩
#align smul_eq_iff_inv_smul_eq Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq
theorem smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^ n • x = x :=
by
theorem Rubin.GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ) :
g • x = x → g ^ n • x = x := by
induction n
simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
· intro h
nth_rw 2 [← (Rubin.GroupActionExt.smul_congr g (n_ih h)).trans h]
rw [← mul_smul, ← pow_succ]
#align Rubin.smul_pow_eq_of_smul_eq Rubin.smul_pow_eq_of_smul_eq
#align smul_pow_eq_of_smul_eq Rubin.GroupActionExt.smul_pow_eq_of_smul_eq
theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^ n • x = x :=
by
theorem Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) :
g • x = x → g ^ n • x = x := by
intro h
cases n
· let this.1 := Rubin.GroupActionExt.smul_pow_eq_of_smul_eq n h; finish
@ -211,31 +205,32 @@ theorem smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g ^
let this.1 :=
smul_eq_iff_inv_smul_eq.mp (Rubin.GroupActionExt.smul_pow_eq_of_smul_eq (1 + n) h);
finish
#align Rubin.smul_zpow_eq_of_smul_eq Rubin.smul_zpow_eq_of_smul_eq
#align smul_zpow_eq_of_smul_eq Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq
def IsEquivariant (G : Type _) {β : Type _} [Group G] [MulAction G α] [MulAction G β] (f : α → β) :=
def Rubin.GroupActionExt.is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
[MulAction G β] (f : α → β) :=
∀ g : G, ∀ x : α, f (g • x) = g • f x
#align Rubin.is_equivariant Rubin.IsEquivariant
#align is_equivariant Rubin.GroupActionExt.is_equivariant
def subsetImg' (g : G) (U : Set α) :=
def Rubin.SmulImage.smulImage' (g : G) (U : Set α) :=
{x | g⁻¹ • x ∈ U}
#align Rubin.subset_img' Rubin.subsetImg'
#align subset_img' Rubin.SmulImage.smulImage'
def subsetPreimg' (g : G) (U : Set α) :=
def Rubin.SmulImage.smul_preimage' (g : G) (U : Set α) :=
{x | g • x ∈ U}
#align Rubin.subset_preimg' Rubin.subsetPreimg'
#align subset_preimg' Rubin.SmulImage.smul_preimage'
def subsetImg (g : G) (U : Set α) :=
def Rubin.SmulImage.SmulImage (g : G) (U : Set α) :=
(· • ·) g '' U
#align Rubin.subset_img Rubin.subsetImg
#align subset_img Rubin.SmulImage.SmulImage
infixl:60 "•''" => subsetImg
infixl:60 "•''" => Rubin.SmulImage.SmulImage
theorem subsetImg_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
theorem Rubin.SmulImage.smulImage_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
rfl
#align Rubin.subset_img_def Rubin.subsetImg_def
#align subset_img_def Rubin.SmulImage.smulImage_def
theorem mem_smul'' {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
theorem Rubin.SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
by
rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x]
constructor
@ -244,35 +239,36 @@ theorem mem_smul'' {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ •
exact ygx ▸ yU
· intro h
use⟨g⁻¹ • x, set.mem_preimage.mp h, smul_inv_smul g x⟩
#align Rubin.mem_smul'' Rubin.mem_smul''
#align mem_smul'' Rubin.SmulImage.mem_smulImage
theorem mem_inv_smul'' {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
theorem Rubin.SmulImage.mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
by
let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U
rw [inv_inv] at msi
exact msi
#align Rubin.mem_inv_smul'' Rubin.mem_inv_smul''
#align mem_inv_smul'' Rubin.SmulImage.mem_inv_smulImage
theorem hMul_smul'' (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
theorem Rubin.SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ←
mul_smul, mul_inv_rev]
#align Rubin.mul_smul'' Rubin.hMul_smul''
#align mul_smul'' Rubin.SmulImage.mul_smulImage
@[simp]
theorem smul''_smul'' {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
(hMul_smul'' g h U).symm
#align Rubin.smul''_smul'' Rubin.smul''_smul''
theorem Rubin.SmulImage.smulImage_smulImage {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
(Rubin.SmulImage.mul_smulImage g h U).symm
#align smul''_smul'' Rubin.SmulImage.smulImage_smulImage
@[simp]
theorem one_smul'' (U : Set α) : (1 : G)•''U = U :=
theorem Rubin.SmulImage.one_smulImage (U : Set α) : (1 : G)•''U = U :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul]
#align Rubin.one_smul'' Rubin.one_smul''
#align one_smul'' Rubin.SmulImage.one_smulImage
theorem disjoint_smul'' (g : G) {U V : Set α} : Disjoint U V → Disjoint (g•''U) (g•''V) :=
theorem Rubin.SmulImage.disjoint_smulImage (g : G) {U V : Set α} :
Disjoint U V → Disjoint (g•''U) (g•''V) :=
by
intro disjoint_U_V
rw [Set.disjoint_left]
@ -280,43 +276,44 @@ theorem disjoint_smul'' (g : G) {U V : Set α} : Disjoint U V → Disjoint (g•
intro x x_in_gU
by_contra h
exact (disjoint_U_V (mem_smul''.mp x_in_gU)) (mem_smul''.mp h)
#align Rubin.disjoint_smul'' Rubin.disjoint_smul''
#align disjoint_smul'' Rubin.SmulImage.disjoint_smulImage
-- TODO: check if this is actually needed
theorem smul''_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
theorem Rubin.SmulImage.smulImage_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
congr_arg fun W : Set α => g•''W
#align Rubin.smul''_congr Rubin.smul''_congr
#align smul''_congr Rubin.SmulImage.smulImage_congr
theorem smul''_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
theorem Rubin.SmulImage.smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
by
intro h1 x
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
exact fun h2 => h1 h2
#align Rubin.smul''_subset Rubin.smul''_subset
#align smul''_subset Rubin.SmulImage.smulImage_subset
theorem smul''_union (g : G) {U V : Set α} : g•''U V = (g•''U) (g•''V) :=
theorem Rubin.SmulImage.smulImage_union (g : G) {U V : Set α} : g•''U V = (g•''U) (g•''V) :=
by
ext
rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage,
Rubin.SmulImage.mem_smulImage]
#align Rubin.smul''_union Rubin.smul''_union
#align smul''_union Rubin.SmulImage.smulImage_union
theorem smul''_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
theorem Rubin.SmulImage.smulImage_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
by
ext
rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage,
Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff]
#align Rubin.smul''_inter Rubin.smul''_inter
#align smul''_inter Rubin.SmulImage.smulImage_inter
theorem smul''_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
theorem Rubin.SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
by
ext
constructor
· intro h; rw [Set.mem_preimage]; exact mem_smul''.mp h
· intro h; rw [Rubin.SmulImage.mem_smulImage]; exact set.mem_preimage.mp h
#align Rubin.smul''_eq_inv_preimage Rubin.smul''_eq_inv_preimage
#align smul''_eq_inv_preimage Rubin.SmulImage.smulImage_eq_inv_preimage
theorem smul''_eq_of_smul_eq {g h : G} {U : Set α} : (∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
theorem Rubin.SmulImage.smulImage_eq_of_smul_eq {g h : G} {U : Set α} :
(∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
by
intro hU
ext
@ -326,41 +323,48 @@ theorem smul''_eq_of_smul_eq {g h : G} {U : Set α} : (∀ x ∈ U, g • x = h
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k
· intro k; let a := congr_arg ((· • ·) g⁻¹) (hU (h⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k
#align Rubin.smul''_eq_of_smul_eq Rubin.smul''_eq_of_smul_eq
#align smul''_eq_of_smul_eq Rubin.SmulImage.smulImage_eq_of_smul_eq
end Smul''
--------------------------------
section Rubin.SmulSupport.Support
def support (α : Type _) [MulAction G α] (g : G) :=
def Rubin.SmulSupport.Support (α : Type _) [MulAction G α] (g : G) :=
{x : α | g • x ≠ x}
#align Rubin.support Rubin.support
#align support Rubin.SmulSupport.Support
theorem support_eq_not_fixedBy {g : G} : support α g = MulAction.fixedBy G α gᶜ := by tauto
#align Rubin.support_eq_not_fixed_by Rubin.support_eq_not_fixedBy
theorem Rubin.SmulSupport.support_eq_not_fixed_by {g : G} :
Rubin.SmulSupport.Support α g = MulAction.fixedBy G α gᶜ := by tauto
#align support_eq_not_fixed_by Rubin.SmulSupport.support_eq_not_fixed_by
theorem mem_support {x : α} {g : G} : x ∈ support α g ↔ g • x ≠ x := by tauto
#align Rubin.mem_support Rubin.mem_support
theorem Rubin.SmulSupport.mem_support {x : α} {g : G} :
x ∈ Rubin.SmulSupport.Support α g ↔ g • x ≠ x := by tauto
#align mem_support Rubin.SmulSupport.mem_support
theorem mem_not_support {x : α} {g : G} : x ∉ support α g ↔ g • x = x := by
theorem Rubin.SmulSupport.not_mem_support {x : α} {g : G} :
x ∉ Rubin.SmulSupport.Support α g ↔ g • x = x := by
rw [Rubin.SmulSupport.mem_support, Classical.not_not]
#align Rubin.mem_not_support Rubin.mem_not_support
#align mem_not_support Rubin.SmulSupport.not_mem_support
theorem smul_in_support {g : G} {x : α} : x ∈ support α g → g • x ∈ support α g := fun h =>
theorem Rubin.SmulSupport.smul_mem_support {g : G} {x : α} :
x ∈ Rubin.SmulSupport.Support α g → g • x ∈ Rubin.SmulSupport.Support α g := fun h =>
h ∘ smul_left_cancel g
#align Rubin.smul_in_support Rubin.smul_in_support
#align smul_in_support Rubin.SmulSupport.smul_mem_support
theorem inv_smul_in_support {g : G} {x : α} : x ∈ support α g → g⁻¹ • x ∈ support α g := fun h k =>
h (smul_inv_smul g x ▸ smul_congr g k)
#align Rubin.inv_smul_in_support Rubin.inv_smul_in_support
theorem Rubin.SmulSupport.inv_smul_mem_support {g : G} {x : α} :
x ∈ Rubin.SmulSupport.Support α g → g⁻¹ • x ∈ Rubin.SmulSupport.Support α g := fun h k =>
h (smul_inv_smul g x ▸ Rubin.GroupActionExt.smul_congr g k)
#align inv_smul_in_support Rubin.SmulSupport.inv_smul_mem_support
theorem fixed_of_disjoint {g : G} {x : α} {U : Set α} :
x ∈ U → Disjoint U (support α g) → g • x = x := fun x_in_U disjoint_U_support =>
mem_not_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
#align Rubin.fixed_of_disjoint Rubin.fixed_of_disjoint
theorem Rubin.SmulSupport.fixed_of_disjoint {g : G} {x : α} {U : Set α} :
x ∈ U → Disjoint U (Rubin.SmulSupport.Support α g) → g • x = x :=
fun x_in_U disjoint_U_support =>
Rubin.SmulSupport.not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
#align fixed_of_disjoint Rubin.SmulSupport.fixed_of_disjoint
theorem fixes_subset_within_support (g : G) {U : Set α} : support α g ⊆ U → g•''U = U :=
theorem Rubin.SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} :
Rubin.SmulSupport.Support α g ⊆ U → g•''U = U :=
by
intro support_in_U
ext x
@ -369,14 +373,17 @@ theorem fixes_subset_within_support (g : G) {U : Set α} : support α g ⊆ U
⟨fun _ => support_in_U xmoved, fun _ =>
mem_smul''.mpr (support_in_U (Rubin.SmulSupport.inv_smul_mem_support xmoved))⟩
rw [Rubin.SmulImage.mem_smulImage, smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp xfixed)]
#align Rubin.fixes_subset_within_support Rubin.fixes_subset_within_support
#align fixes_subset_within_support Rubin.SmulSupport.fixed_smulImage_in_support
theorem moves_subset_within_support (g : G) (U V : Set α) : U ⊆ V → support α g ⊆ V → g•''U ⊆ V :=
fun U_in_V support_in_V => fixes_subset_within_support g support_in_V ▸ smul''_subset g U_in_V
#align Rubin.moves_subset_within_support Rubin.moves_subset_within_support
theorem Rubin.SmulSupport.smulImage_subset_in_support (g : G) (U V : Set α) :
U ⊆ V → Rubin.SmulSupport.Support α g ⊆ V → g•''U ⊆ V := fun U_in_V support_in_V =>
Rubin.SmulSupport.fixed_smulImage_in_support g support_in_V ▸
Rubin.SmulImage.smulImage_subset g U_in_V
#align moves_subset_within_support Rubin.SmulSupport.smulImage_subset_in_support
theorem support_hMul (g h : G) (α : Type _) [MulAction G α] :
support α (g * h) ⊆ support α g support α h :=
theorem Rubin.SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] :
Rubin.SmulSupport.Support α (g * h) ⊆
Rubin.SmulSupport.Support α g Rubin.SmulSupport.Support α h :=
by
intro x x_in_support
by_contra h_support
@ -385,10 +392,10 @@ theorem support_hMul (g h : G) (α : Type _) [MulAction G α] :
x_in_support
((mul_smul g h x).trans
((congr_arg ((· • ·) g) (mem_not_support.mp this.2)).trans <| mem_not_support.mp this.1))
#align Rubin.support_mul Rubin.support_hMul
#align support_mul Rubin.SmulSupport.support_mul
theorem support_conjugate (α : Type _) [MulAction G α] (g h : G) :
support α (h * g * h⁻¹) = h•''support α g :=
theorem Rubin.SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h : G) :
Rubin.SmulSupport.Support α (h * g * h⁻¹) = h•''Rubin.SmulSupport.Support α g :=
by
ext
rw [Rubin.SmulSupport.mem_support, Rubin.SmulImage.mem_smulImage, Rubin.SmulSupport.mem_support,
@ -396,19 +403,21 @@ theorem support_conjugate (α : Type _) [MulAction G α] (g h : G) :
constructor
· intro h1; by_contra h2; exact h1 ((congr_arg ((· • ·) h) h2).trans (smul_inv_smul _ _))
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2)
#align Rubin.support_conjugate Rubin.support_conjugate
#align support_conjugate Rubin.SmulSupport.support_conjugate
theorem support_inv (α : Type _) [MulAction G α] (g : G) : support α g⁻¹ = support α g :=
theorem Rubin.SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) :
Rubin.SmulSupport.Support α g⁻¹ = Rubin.SmulSupport.Support α g :=
by
ext
rw [Rubin.SmulSupport.mem_support, Rubin.SmulSupport.mem_support]
constructor
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mp h2)
· intro h1; by_contra h2; exact h1 (smul_eq_iff_inv_smul_eq.mpr h2)
#align Rubin.support_inv Rubin.support_inv
#align support_inv Rubin.SmulSupport.support_inv
theorem support_pow (α : Type _) [MulAction G α] (g : G) (j : ) :
support α (g ^ j) ⊆ support α g := by
theorem Rubin.SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j : ) :
Rubin.SmulSupport.Support α (g ^ j) ⊆ Rubin.SmulSupport.Support α g :=
by
intro x xmoved
by_contra xfixed
rw [Rubin.SmulSupport.mem_support] at xmoved
@ -418,10 +427,11 @@ theorem support_pow (α : Type _) [MulAction G α] (g : G) (j : ) :
let j_ih := (congr_arg ((· • ·) g) (not_not.mp j_ih)).trans (mem_not_support.mp xfixed)
rw [← mul_smul, ← pow_succ] at j_ih
exact j_ih
#align Rubin.support_pow Rubin.support_pow
#align support_pow Rubin.SmulSupport.support_pow
theorem support_comm (α : Type _) [MulAction G α] (g h : G) :
support α ⁅g, h⁆ ⊆ support α h (g•''support α h) :=
theorem Rubin.SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G) :
Rubin.SmulSupport.Support α ⁅g, h⁆ ⊆
Rubin.SmulSupport.Support α h (g•''Rubin.SmulSupport.Support α h) :=
by
intro x x_in_support
by_contra all_fixed
@ -433,10 +443,10 @@ theorem support_comm (α : Type _) [MulAction G α] (g h : G) :
((Rubin.SmulSupport.support_conjugate α h g).symm ▸ (not_or_distrib.mp all_fixed).2)
x_in_support
· exact all_fixed (Or.inl xmoved)
#align Rubin.support_comm Rubin.support_comm
#align support_comm Rubin.SmulSupport.support_comm
theorem disjoint_support_comm (f g : G) {U : Set α} :
support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
theorem Rubin.SmulSupport.disjoint_support_comm (f g : G) {U : Set α} :
Rubin.SmulSupport.Support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
by
intro support_in_U disjoint_U x x_in_U
have support_conj : Rubin.SmulSupport.Support α (g * f⁻¹ * g⁻¹) ⊆ g•''U :=
@ -449,27 +459,28 @@ theorem disjoint_support_comm (f g : G) {U : Set α} :
(Set.disjoint_of_subset_right support_conj disjoint_U))).symm
rw [← mul_smul, ← mul_assoc, ← mul_assoc] at goal
exact goal.symm
#align Rubin.disjoint_support_comm Rubin.disjoint_support_comm
#align disjoint_support_comm Rubin.SmulSupport.disjoint_support_comm
end Rubin.SmulSupport.Support
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G :=
{g : G | ∀ x : α, g • x = x x ∈ U}
#align Rubin.rigid_stabilizer' Rubin.rigidStabilizer'
#align rigid_stabilizer' rigidStabilizer'
/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/
def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G
where
carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x}
hMul_mem' a b ha hb x x_notin_U := by rw [mul_smul a b x, hb x x_notin_U, ha x x_notin_U]
inv_mem' _ hg x x_notin_U := smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
inv_mem' _ hg x x_notin_U := Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
one_mem' x _ := one_smul G x
#align Rubin.rigid_stabilizer Rubin.rigidStabilizer
#align rigid_stabilizer rigidStabilizer
theorem rist_supported_in_set {g : G} {U : Set α} : g ∈ rigidStabilizer G U → support α g ⊆ U :=
fun h x x_in_support => by_contradiction (x_in_support ∘ h x)
#align Rubin.rist_supported_in_set Rubin.rist_supported_in_set
theorem rist_supported_in_set {g : G} {U : Set α} :
g ∈ rigidStabilizer G U → Rubin.SmulSupport.Support α g ⊆ U := fun h x x_in_support =>
by_contradiction (x_in_support ∘ h x)
#align rist_supported_in_set rist_supported_in_set
theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
(rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) :=
@ -477,7 +488,7 @@ theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
intro g g_in_ristV x x_notin_U
have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V)
exact g_in_ristV x x_notin_V
#align Rubin.rist_ss_rist Rubin.rist_ss_rist
#align rist_ss_rist rist_ss_rist
end Actions
@ -486,38 +497,44 @@ section TopologicalActions
variable [TopologicalSpace α] [TopologicalSpace β]
class ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends MulAction G α where
class Rubin.Topological.ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends
MulAction G α where
Continuous : ∀ g : G, Continuous (@SMul.smul G α _ g)
#align Rubin.continuous_mul_action Rubin.ContinuousMulAction
#align continuous_mul_action Rubin.Topological.ContinuousMulAction
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α] [TopologicalSpace β]
[MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : IsEquivariant G to_fun
#align Rubin.equivariant_homeomorph Rubin.EquivariantHomeomorph
structure Rubin.Topological.equivariant_homeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : Rubin.GroupActionExt.is_equivariant G to_fun
#align equivariant_homeomorph Rubin.Topological.equivariant_homeomorph
theorem equivariantFun [MulAction G α] [MulAction G β] (h : EquivariantHomeomorph G α β) :
IsEquivariant G h.toFun :=
theorem Rubin.Topological.equivariant_fun [MulAction G α] [MulAction G β]
(h : Rubin.Topological.equivariant_homeomorph G α β) :
Rubin.GroupActionExt.is_equivariant G h.toFun :=
h.equivariant
#align Rubin.equivariant_fun Rubin.equivariantFun
#align equivariant_fun Rubin.Topological.equivariant_fun
theorem equivariantInv [MulAction G α] [MulAction G β] (h : EquivariantHomeomorph G α β) :
IsEquivariant G h.invFun := by
theorem Rubin.Topological.equivariant_inv [MulAction G α] [MulAction G β]
(h : Rubin.Topological.equivariant_homeomorph G α β) :
Rubin.GroupActionExt.is_equivariant G h.invFun :=
by
intro g x
let e := congr_arg h.inv_fun (h.equivariant g (h.inv_fun x))
rw [h.left_inv _, h.right_inv _] at e
exact e.symm
#align Rubin.equivariant_inv Rubin.equivariantInv
#align equivariant_inv Rubin.Topological.equivariant_inv
variable [ContinuousMulAction G α]
variable [Rubin.Topological.ContinuousMulAction G α]
theorem img_open_open (g : G) (U : Set α) (h : IsOpen U) [ContinuousMulAction G α] :
IsOpen (g•''U) := by
theorem Rubin.Topological.img_open_open (g : G) (U : Set α) (h : IsOpen U)
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (g•''U) :=
by
rw [Rubin.SmulImage.smulImage_eq_inv_preimage]
exact Continuous.isOpen_preimage (continuous_mul_action.continuous g⁻¹) U h
#align Rubin.img_open_open Rubin.img_open_open
exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h
#align img_open_open Rubin.Topological.img_open_open
theorem support_open (g : G) [TopologicalSpace α] [T2Space α] [ContinuousMulAction G α] :
IsOpen (support α g) := by
theorem Rubin.Topological.support_open (g : G) [TopologicalSpace α] [T2Space α]
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (Rubin.SmulSupport.Support α g) :=
by
apply is_open_iff_forall_mem_open.mpr
intro x xmoved
rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩
@ -527,7 +544,7 @@ theorem support_open (g : G) [TopologicalSpace α] [T2Space α] [ContinuousMulAc
(mem_inv_smul''.mp (Set.mem_of_mem_inter_right yW)) (Set.mem_of_mem_inter_left yW),
IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U),
⟨x_in_V, mem_inv_smul''.mpr gx_in_U⟩⟩
#align Rubin.support_open Rubin.support_open
#align support_open Rubin.Topological.support_open
end TopologicalActions
@ -536,33 +553,34 @@ section FaithfulActions
variable [MulAction G α] [FaithfulSMul G α]
theorem faithful_moves_point {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
theorem Rubin.faithful_moves_point {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm
eq_of_smul_eq_smul h3
#align Rubin.faithful_moves_point Rubin.faithful_moves_point
#align faithful_moves_point Rubin.faithful_moves_point
theorem faithful_moves_point' {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
theorem Rubin.faithful_moves_point' {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
g ≠ 1 → ∃ x : α, g • x ≠ x := fun k =>
by_contradiction fun h => k <| faithful_moves_point <| Classical.not_exists_not.mp h
#align Rubin.faithful_moves_point' Rubin.faithful_moves_point'
by_contradiction fun h => k <| Rubin.faithful_moves_point <| Classical.not_exists_not.mp h
#align faithful_moves_point' Rubin.faithful_moves_point'
theorem faithful_rist_moves_point {g : G} {U : Set α} :
theorem Rubin.faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} :
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
by
intro g_rigid g_ne_one
rcases Rubin.faithful_moves_point'₁ α g_ne_one with ⟨x, xmoved⟩
exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩
#align Rubin.faithful_rist_moves_point Rubin.faithful_rist_moves_point
#align faithful_rist_moves_point Rubin.faithful_rigid_stabilizer_moves_point
theorem ne_one_support_nempty {g : G} : g ≠ 1 → (support α g).Nonempty :=
theorem Rubin.ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.Support α g).Nonempty :=
by
intro h1
cases' Rubin.faithful_moves_point'₁ α h1 with x _
use x
#align Rubin.ne_one_support_nempty Rubin.ne_one_support_nempty
#align ne_one_support_nempty Rubin.ne_one_support_nonempty
-- FIXME: somehow clashes with another definition
theorem disjoint_commute {f g : G} : Disjoint (support α f) (support α g) → Commute f g :=
theorem Rubin.disjoint_commute₁ {f g : G} :
Disjoint (Rubin.SmulSupport.Support α f) (Rubin.SmulSupport.Support α g) → Commute f g :=
by
intro hdisjoint
rw [← commutatorElement_eq_one_iff_commute]
@ -585,7 +603,7 @@ theorem disjoint_commute {f g : G} : Disjoint (support α f) (support α g) →
rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hgfixed),
smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hffixed), mem_not_support.mp hgfixed,
mem_not_support.mp hffixed]
#align Rubin.disjoint_commute Rubin.disjoint_commute
#align disjoint_commute Rubin.disjoint_commute
end FaithfulActions
@ -594,21 +612,21 @@ section RubinActions
variable [TopologicalSpace α] [TopologicalSpace β]
def HasNoIsolatedPoints (α : Type _) [TopologicalSpace α] :=
def Rubin.has_no_isolated_points (α : Type _) [TopologicalSpace α] :=
∀ x : α, (nhdsWithin x ({x}ᶜ)).ne_bot
#align Rubin.has_no_isolated_points Rubin.HasNoIsolatedPoints
#align has_no_isolated_points Rubin.has_no_isolated_points
def IsLocallyDense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
def Rubin.is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p))
#align Rubin.is_locally_dense Rubin.IsLocallyDense
#align is_locally_dense Rubin.is_locally_dense
structure RubinActionCat (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
structure Rubin.RubinAction (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
FaithfulSMul G α where
locally_compact : LocallyCompactSpace α
hausdorff : T2Space α
no_isolated_points : HasNoIsolatedPoints α
locallyDense : IsLocallyDense G α
#align Rubin.rubin_action Rubin.RubinActionCat
no_isolated_points : Rubin.has_no_isolated_points α
locallyDense : Rubin.is_locally_dense G α
#align rubin_action Rubin.RubinAction
end RubinActions
@ -617,36 +635,38 @@ section Rubin.Period.period
variable [MulAction G α]
noncomputable def period (p : α) (g : G) : :=
noncomputable def Rubin.Period.period (p : α) (g : G) : :=
sInf {n : | n > 0 ∧ g ^ n • p = p}
#align Rubin.period Rubin.period
#align period Rubin.Period.period
theorem period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) :
0 < period p g ∧ period p g ≤ m := by
theorem Rubin.Period.period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0)
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
by
constructor
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩; linarith;
exact set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
#align Rubin.period_le_fix Rubin.period_le_fix
#align period_le_fix Rubin.Period.period_le_fix
theorem notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0)
(pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) : n ≤ period p g :=
by
theorem Rubin.Period.notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : , 0 < i → i < n → g ^ i • p ≠ p) :
n ≤ Rubin.Period.period p g := by
by_contra period_le
exact
(pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le))
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
#align Rubin.notfix_le_period Rubin.notfix_le_period
#align notfix_le_period Rubin.Period.notfix_le_period
theorem notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ period p g :=
notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
theorem Rubin.Period.notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0)
(period_pos : Rubin.Period.period p g > 0)
(pmoves : ∀ i : Fin n, 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ) (i_pos : 0 < i) (i_lt_n : i < n) =>
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
#align Rubin.notfix_le_period' Rubin.notfix_le_period'
#align notfix_le_period' Rubin.Period.notfix_le_period'
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
theorem period_neutral_eq_one (p : α) : period p (1 : G) = 1 :=
theorem Rubin.Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
by
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
@ -655,18 +675,19 @@ theorem period_neutral_eq_one (p : α) : period p (1 : G) = 1 :=
"./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]]" :
(1 : G) ^ 1 • p = p)
linarith
#align Rubin.period_neutral_eq_one Rubin.period_neutral_eq_one
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
def periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : U) (g : H), period (p : α) (g : G) = n}
#align Rubin.periods Rubin.periods
def Rubin.Period.periods (U : Set α) (H : Subgroup G) : Set :=
{n : | ∃ (p : U) (g : H), Rubin.Period.period (p : α) (g : G) = n}
#align periods Rubin.Period.periods
/- ./././Mathport/Syntax/Translate/Tactic/Builtin.lean:73:14: unsupported tactic `group_action #[[]] -/
-- TODO: split into multiple lemmas
theorem period_lemma {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
theorem Rubin.Period.periods_lemmas {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
(periods U H).Nonempty ∧
BddAbove (periods U H) ∧ ∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
(Rubin.Period.periods U H).Nonempty ∧
BddAbove (Rubin.Period.periods U H) ∧
∃ (m : ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
by
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by intro p g; rw [gm_eq_one g];
@ -678,11 +699,12 @@ theorem period_lemma {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
rcases hperiod with ⟨p, g, hperiod⟩; rw [← hperiod];
exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
#align Rubin.period_lemma Rubin.period_lemma
#align period_lemma Rubin.Period.periods_lemmas
theorem period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
theorem Rubin.Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∃ (p : U) (g : H) (n : ), n > 0 ∧ period (p : α) (g : G) = n ∧ n = sSup (periods U H) :=
∃ (p : U) (g : H) (n : ),
n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
@ -690,11 +712,13 @@ theorem period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgrou
exact
⟨p, g, Sup (Rubin.Period.periods U H),
hperiod ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1, hperiod, rfl⟩
#align Rubin.period_from_exponent Rubin.period_from_exponent
#align period_from_exponent Rubin.Period.period_from_exponent
theorem zero_lt_period_le_sSup_periods {U : Set α} (U_nonempty : U.Nonempty) {H : Subgroup G}
(exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H), 0 < period (p : α) (g : G) ∧ period (p : α) (g : G) ≤ sSup (periods U H) :=
theorem Rubin.Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
∀ (p : U) (g : H),
0 < Rubin.Period.period (p : α) (g : G) ∧
Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
by
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
@ -704,9 +728,9 @@ theorem zero_lt_period_le_sSup_periods {U : Set α} (U_nonempty : U.Nonempty) {H
exact
⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
le_csSup periods_bounded period_in_periods⟩
#align Rubin.zero_lt_period_le_Sup_periods Rubin.zero_lt_period_le_sSup_periods
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
theorem pow_period_fix (p : α) (g : G) : g ^ period p g • p = p :=
theorem Rubin.Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
by
cases eq_zero_or_neZero (Rubin.Period.period p g)
· rw [h]; finish
@ -715,18 +739,19 @@ theorem pow_period_fix (p : α) (g : G) : g ^ period p g • p = p :=
(Nat.sInf_mem
(Nat.nonempty_of_pos_sInf
(Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2
#align Rubin.pow_period_fix Rubin.pow_period_fix
#align pow_period_fix Rubin.Period.pow_period_fix
end Rubin.Period.period
----------------------------------------------------------------
section AlgebraicDisjointness
variable [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α]
def IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
def Rubin.Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α]
[MulAction G α] :=
∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥
#align Rubin.is_locally_moving Rubin.IsLocallyMoving
#align is_locally_moving Rubin.Disjointness.IsLocallyMoving
-- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin
-- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU,
@ -994,68 +1019,77 @@ end AlgebraicDisjointness
----------------------------------------------------------------
section Rubin.RegularSupport.RegularSupport
variable [TopologicalSpace α] [ContinuousMulAction G α]
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α]
def interiorClosure (U : Set α) :=
def Rubin.RegularSupport.InteriorClosure (U : Set α) :=
interior (closure U)
#align Rubin.interior_closure Rubin.interiorClosure
#align interior_closure Rubin.RegularSupport.InteriorClosure
theorem isOpen_interiorClosure (U : Set α) : IsOpen (interiorClosure U) :=
theorem Rubin.RegularSupport.is_open_interiorClosure (U : Set α) :
IsOpen (Rubin.RegularSupport.InteriorClosure U) :=
isOpen_interior
#align Rubin.is_open_interior_closure Rubin.isOpen_interiorClosure
#align is_open_interior_closure Rubin.RegularSupport.is_open_interiorClosure
theorem interiorClosure_mono {U V : Set α} : U ⊆ V → interiorClosure U ⊆ interiorClosure V :=
theorem Rubin.RegularSupport.interiorClosure_mono {U V : Set α} :
U ⊆ V → Rubin.RegularSupport.InteriorClosure U ⊆ Rubin.RegularSupport.InteriorClosure V :=
interior_mono ∘ closure_mono
#align Rubin.interior_closure_mono Rubin.interiorClosure_mono
#align interior_closure_mono Rubin.RegularSupport.interiorClosure_mono
def Set.IsRegularOpen (U : Set α) :=
interiorClosure U = U
#align Rubin.set.is_regular_open Rubin.Set.IsRegularOpen
def Rubin.RegularSupport.Set.is_regular_open (U : Set α) :=
Rubin.RegularSupport.InteriorClosure U = U
#align set.is_regular_open Rubin.RegularSupport.Set.is_regular_open
theorem Set.is_regular_def (U : Set α) : U.IsRegularOpen ↔ interiorClosure U = U := by rfl
#align Rubin.set.is_regular_def Rubin.Set.is_regular_def
theorem Rubin.RegularSupport.Set.is_regular_def (U : Set α) :
U.is_regular_open ↔ Rubin.RegularSupport.InteriorClosure U = U := by rfl
#align set.is_regular_def Rubin.RegularSupport.Set.is_regular_def
theorem IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
theorem Rubin.RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
by
intro U_open x x_in_U
apply interior_mono subset_closure
rw [U_open.interior_eq]
exact x_in_U
#align Rubin.is_open.in_closure Rubin.IsOpen.in_closure
#align is_open.in_closure Rubin.RegularSupport.IsOpen.in_closure
theorem IsOpen.interiorClosure_subset {U : Set α} : IsOpen U → U ⊆ interiorClosure U := fun h =>
theorem Rubin.RegularSupport.IsOpen.interiorClosure_subset {U : Set α} :
IsOpen U → U ⊆ Rubin.RegularSupport.InteriorClosure U := fun h =>
(subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure)
#align Rubin.is_open.interior_closure_subset Rubin.IsOpen.interiorClosure_subset
#align is_open.interior_closure_subset Rubin.RegularSupport.IsOpen.interiorClosure_subset
theorem regular_interiorClosure (U : Set α) : (interiorClosure U).IsRegularOpen :=
theorem Rubin.RegularSupport.regular_interior_closure (U : Set α) :
(Rubin.RegularSupport.InteriorClosure U).is_regular_open :=
by
rw [Rubin.RegularSupport.Set.is_regular_def]
apply Set.Subset.antisymm
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure))
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
#align Rubin.regular_interior_closure Rubin.regular_interiorClosure
#align regular_interior_closure Rubin.RegularSupport.regular_interior_closure
def regularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
interiorClosure (support α g)
#align Rubin.regular_support Rubin.regularSupport
def Rubin.RegularSupport.RegularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
Rubin.RegularSupport.InteriorClosure (Rubin.SmulSupport.Support α g)
#align regular_support Rubin.RegularSupport.RegularSupport
theorem regular_regularSupport {g : G} : (regularSupport α g).IsRegularOpen :=
regular_interiorClosure _
#align Rubin.regular_regular_support Rubin.regular_regularSupport
theorem Rubin.RegularSupport.regularSupport_regular {g : G} :
(Rubin.RegularSupport.RegularSupport α g).is_regular_open :=
Rubin.RegularSupport.regular_interior_closure _
#align regular_regular_support Rubin.RegularSupport.regularSupport_regular
theorem support_in_regularSupport [T2Space α] (g : G) : support α g ⊆ regularSupport α g :=
IsOpen.interiorClosure_subset (support_open g)
#align Rubin.support_in_regular_support Rubin.support_in_regularSupport
theorem Rubin.RegularSupport.support_subset_regularSupport [T2Space α] (g : G) :
Rubin.SmulSupport.Support α g ⊆ Rubin.RegularSupport.RegularSupport α g :=
Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g)
#align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport
theorem mem_regularSupport (g : G) (U : Set α) :
U.IsRegularOpen → g ∈ rigidStabilizer G U → regularSupport α g ⊆ U := fun U_ro g_moves =>
(Set.is_regular_def _).mp U_ro ▸ interiorClosure_mono (rist_supported_in_set g_moves)
#align Rubin.mem_regular_support Rubin.mem_regularSupport
theorem Rubin.RegularSupport.mem_regularSupport (g : G) (U : Set α) :
U.is_regular_open → g ∈ rigidStabilizer G U → Rubin.RegularSupport.RegularSupport α g ⊆ U :=
fun U_ro g_moves =>
(Rubin.RegularSupport.Set.is_regular_def _).mp U_ro ▸
Rubin.RegularSupport.interiorClosure_mono (rist_supported_in_set g_moves)
#align mem_regular_support Rubin.RegularSupport.mem_regularSupport
-- FIXME: Weird naming?
def algebraicCentralizer (f : G) : Set G :=
{h | ∃ g, h = g ^ 12 ∧ IsAlgebraicallyDisjoint f g}
#align Rubin.algebraic_centralizer Rubin.algebraicCentralizer
def Rubin.RegularSupport.AlgebraicCentralizer (f : G) : Set G :=
{h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g}
#align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer
end Rubin.RegularSupport.RegularSupport
@ -1146,5 +1180,3 @@ end Rubin.RegularSupport.RegularSupport
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end Rubin
end Rubin

@ -156,7 +156,6 @@ add_tactic_doc
end group_action_tactic
namespace Rubin
example (G α : Type*) [group G] (a b c : G) [mul_action G α] (x : α) : ⁅a*b,c⁆ • x = (a*⁅b,c⁆*a⁻¹*⁅a,c⁆) • x := begin
group_action,
end
@ -1053,5 +1052,3 @@ end regular_support
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end rubin
end Rubin

Loading…
Cancel
Save