|
|
|
@ -348,7 +348,7 @@ lemma remark_1_2 (f g : G) (h_disj : AlgebraicallyDisjoint f g): Commute f g :=
|
|
|
|
|
|
|
|
|
|
end AlgebraicDisjointness
|
|
|
|
|
|
|
|
|
|
section RigidStabilizer
|
|
|
|
|
section RegularSupport
|
|
|
|
|
|
|
|
|
|
lemma lemma_2_2 (G: Type _) {α : Type _} [Group G] [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
|
|
|
|
|
[T2Space α] [h_lm : LocallyMoving G α]
|
|
|
|
@ -482,12 +482,13 @@ by
|
|
|
|
|
rw [<-period_hg_eq_n]
|
|
|
|
|
apply Period.pow_period_fix
|
|
|
|
|
|
|
|
|
|
-- This is referred to as `ξ_G^12(f)`
|
|
|
|
|
-- TODO: put in a different file and introduce some QoL theorems
|
|
|
|
|
def AlgebraicSubgroup {G : Type _} [Group G] (f : G) : Set G :=
|
|
|
|
|
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
|
|
|
|
|
|
|
|
|
|
def AlgebraicCentralizer {G: Type _} (α : Type _) [Group G] [MulAction G α] (f : G) : Set G :=
|
|
|
|
|
Set.centralizer (AlgebraicSubgroup f)
|
|
|
|
|
def AlgebraicCentralizer {G: Type _} [Group G] (f : G) : Subgroup G :=
|
|
|
|
|
Subgroup.centralizer (AlgebraicSubgroup f)
|
|
|
|
|
|
|
|
|
|
-- Given the statement `¬Support α h ⊆ RegularSupport α f`,
|
|
|
|
|
-- we construct an open subset within `Support α h \ RegularSupport α f`,
|
|
|
|
@ -547,19 +548,22 @@ by
|
|
|
|
|
simp at exp_eq_zero
|
|
|
|
|
exact exp_eq_zero n n_pos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lemma proposition_2_1 {G α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α]
|
|
|
|
|
[LocallyMoving G α] [h_faithful : FaithfulSMul G α]
|
|
|
|
|
(f : G) :
|
|
|
|
|
AlgebraicCentralizer α f = RigidStabilizer G (RegularSupport α f) :=
|
|
|
|
|
AlgebraicCentralizer f = RigidStabilizer G (RegularSupport α f) :=
|
|
|
|
|
by
|
|
|
|
|
apply Set.eq_of_subset_of_subset
|
|
|
|
|
ext h
|
|
|
|
|
|
|
|
|
|
constructor
|
|
|
|
|
swap
|
|
|
|
|
{
|
|
|
|
|
intro h h_in_rist
|
|
|
|
|
intro h_in_rist
|
|
|
|
|
simp at h_in_rist
|
|
|
|
|
unfold AlgebraicCentralizer
|
|
|
|
|
rw [Set.mem_centralizer_iff]
|
|
|
|
|
rw [Subgroup.mem_centralizer_iff]
|
|
|
|
|
intro g g_in_S
|
|
|
|
|
simp [AlgebraicSubgroup] at g_in_S
|
|
|
|
|
let ⟨g', ⟨g'_alg_disj, g_eq_g'⟩⟩ := g_in_S
|
|
|
|
@ -581,7 +585,7 @@ by
|
|
|
|
|
exact Disjoint.closure_left supp_disj (support_open _)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
intro h h_in_centralizer
|
|
|
|
|
intro h_in_centralizer
|
|
|
|
|
by_contra h_notin_rist
|
|
|
|
|
simp at h_notin_rist
|
|
|
|
|
rw [rigidStabilizer_support] at h_notin_rist
|
|
|
|
@ -631,7 +635,69 @@ by
|
|
|
|
|
apply h_nc_g12
|
|
|
|
|
exact h_in_centralizer _ g12_in_algebraic_subgroup
|
|
|
|
|
|
|
|
|
|
end RigidStabilizer
|
|
|
|
|
-- Small lemma for remark 2.3
|
|
|
|
|
theorem rigidStabilizer_inter_bot_iff_regularSupport_disj {G α : Type _}
|
|
|
|
|
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [LocallyMoving G α] [FaithfulSMul G α]
|
|
|
|
|
{f g : G} :
|
|
|
|
|
RigidStabilizer G (RegularSupport α f) ⊓ RigidStabilizer G (RegularSupport α g) = ⊥
|
|
|
|
|
↔ Disjoint (RegularSupport α f) (RegularSupport α g) :=
|
|
|
|
|
by
|
|
|
|
|
rw [<-rigidStabilizer_inter]
|
|
|
|
|
constructor
|
|
|
|
|
{
|
|
|
|
|
intro rist_disj
|
|
|
|
|
|
|
|
|
|
by_contra rsupp_not_disj
|
|
|
|
|
rw [Set.not_disjoint_iff] at rsupp_not_disj
|
|
|
|
|
let ⟨x, x_in_rsupp_f, x_in_rsupp_g⟩ := rsupp_not_disj
|
|
|
|
|
|
|
|
|
|
have rsupp_open: IsOpen (RegularSupport α f ∩ RegularSupport α g) := by
|
|
|
|
|
apply IsOpen.inter <;> exact regularSupport_open _ _
|
|
|
|
|
|
|
|
|
|
-- The contradiction occurs by applying the definition of LocallyMoving:
|
|
|
|
|
apply LocallyMoving.locally_moving (G := G) _ rsupp_open _ rist_disj
|
|
|
|
|
|
|
|
|
|
exact ⟨x, x_in_rsupp_f, x_in_rsupp_g⟩
|
|
|
|
|
}
|
|
|
|
|
{
|
|
|
|
|
intro rsupp_disj
|
|
|
|
|
rw [Set.disjoint_iff_inter_eq_empty] at rsupp_disj
|
|
|
|
|
rw [rsupp_disj]
|
|
|
|
|
|
|
|
|
|
by_contra rist_ne_bot
|
|
|
|
|
rw [<-ne_eq, Subgroup.ne_bot_iff_exists_ne_one] at rist_ne_bot
|
|
|
|
|
let ⟨⟨h, h_in_rist⟩, h_ne_one⟩ := rist_ne_bot
|
|
|
|
|
simp at h_ne_one
|
|
|
|
|
apply h_ne_one
|
|
|
|
|
rw [rigidStabilizer_empty] at h_in_rist
|
|
|
|
|
rw [Subgroup.mem_bot] at h_in_rist
|
|
|
|
|
exact h_in_rist
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/--
|
|
|
|
|
This demonstrates that the disjointness of the supports of two elements `f` and `g`
|
|
|
|
|
can be proven without knowing anything about how `f` and `g` act on `α`
|
|
|
|
|
(bar the more global properties of the group action).
|
|
|
|
|
|
|
|
|
|
We could prove that the intersection of the algebraic centralizers of `f` and `g` is trivial
|
|
|
|
|
purely within group theory, and then apply this theorem to know that their support
|
|
|
|
|
in `α` will be disjoint.
|
|
|
|
|
--/
|
|
|
|
|
lemma remark_2_3 {G α : Type _} [Group G] [TopologicalSpace α] [T2Space α]
|
|
|
|
|
[ContinuousMulAction G α] [FaithfulSMul G α] [LocallyMoving G α] {f g : G} :
|
|
|
|
|
(AlgebraicCentralizer f) ⊓ (AlgebraicCentralizer g) = ⊥ → Disjoint (Support α f) (Support α g) :=
|
|
|
|
|
by
|
|
|
|
|
intro alg_disj
|
|
|
|
|
rw [disjoint_interiorClosure_iff (support_open _) (support_open _)]
|
|
|
|
|
simp
|
|
|
|
|
repeat rw [<-RegularSupport.def]
|
|
|
|
|
rw [<-rigidStabilizer_inter_bot_iff_regularSupport_disj]
|
|
|
|
|
|
|
|
|
|
repeat rw [<-proposition_2_1]
|
|
|
|
|
exact alg_disj
|
|
|
|
|
|
|
|
|
|
end RegularSupport
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
|
|
|
|
|