You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/Topological.lean

72 lines
2.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph
import Rubin.MulActionExt
import Rubin.SmulImage
import Rubin.Support
namespace Rubin.Topological
class ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends
MulAction G α where
continuous : ∀ g : G, Continuous (fun x: α => g • x)
#align continuous_mul_action Rubin.Topological.ContinuousMulAction
-- TODO: give this a notation?
structure EquivariantHomeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
equivariant : is_equivariant G toFun
#align equivariant_homeomorph Rubin.Topological.EquivariantHomeomorph
variable {G α β : Type _}
variable [Group G]
variable [TopologicalSpace α] [TopologicalSpace β]
theorem equivariant_fun [MulAction G α] [MulAction G β]
(h : EquivariantHomeomorph G α β) :
is_equivariant G h.toFun :=
h.equivariant
#align equivariant_fun Rubin.Topological.equivariant_fun
theorem equivariant_inv [MulAction G α] [MulAction G β]
(h : EquivariantHomeomorph G α β) :
is_equivariant G h.invFun :=
by
intro g x
symm
let e := congr_arg h.invFun (h.equivariant g (h.invFun x))
rw [h.left_inv _, h.right_inv _] at e
exact e
#align equivariant_inv Rubin.Topological.equivariant_inv
variable [Rubin.Topological.ContinuousMulAction G α]
theorem img_open_open (g : G) (U : Set α) (h : IsOpen U): IsOpen (g •'' U) :=
by
rw [Rubin.smulImage_eq_inv_preimage]
exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h
#align img_open_open Rubin.Topological.img_open_open
theorem support_open (g : G) [TopologicalSpace α] [T2Space α]
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (Support α g) :=
by
apply isOpen_iff_forall_mem_open.mpr
intro x xmoved
rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩
exact
⟨V ∩ (g⁻¹ •'' U), fun y yW =>
Disjoint.ne_of_mem
disjoint_U_V
(mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW))
(Set.mem_of_mem_inter_left yW),
IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U),
⟨x_in_V, mem_inv_smulImage.mpr gx_in_U⟩
#align support_open Rubin.Topological.support_open
end Rubin.Topological