|
|
/-
|
|
|
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
Author : Laurent Bartholdi
|
|
|
-/
|
|
|
import Mathlib.Data.Finset.Basic
|
|
|
import Mathlib.Data.Finset.Card
|
|
|
import Mathlib.Data.Fintype.Perm
|
|
|
import Mathlib.GroupTheory.Subgroup.Basic
|
|
|
import Mathlib.GroupTheory.Commutator
|
|
|
import Mathlib.GroupTheory.GroupAction.Basic
|
|
|
import Mathlib.GroupTheory.Exponent
|
|
|
import Mathlib.GroupTheory.Perm.Basic
|
|
|
import Mathlib.Topology.Basic
|
|
|
import Mathlib.Topology.Compactness.Compact
|
|
|
import Mathlib.Topology.Separation
|
|
|
import Mathlib.Topology.Homeomorph
|
|
|
|
|
|
import Rubin.Tactic
|
|
|
import Rubin.MulActionExt
|
|
|
import Rubin.SmulImage
|
|
|
import Rubin.Support
|
|
|
import Rubin.Topological
|
|
|
import Rubin.RigidStabilizer
|
|
|
import Rubin.Period
|
|
|
import Rubin.AlgebraicDisjointness
|
|
|
import Rubin.RegularSupport
|
|
|
|
|
|
#align_import rubin
|
|
|
|
|
|
namespace Rubin
|
|
|
open Rubin.Tactic
|
|
|
|
|
|
-- TODO: find a home
|
|
|
theorem equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y :=
|
|
|
by
|
|
|
intro x_ne_y
|
|
|
by_contra h
|
|
|
apply x_ne_y
|
|
|
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
|
|
|
#align equiv.congr_ne Rubin.equiv_congr_ne
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section Rubin
|
|
|
|
|
|
variable {G α β : Type _} [Group G]
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section RubinActions
|
|
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
|
|
structure RubinAction (G α : Type _) extends
|
|
|
Group G,
|
|
|
TopologicalSpace α,
|
|
|
MulAction G α,
|
|
|
FaithfulSMul G α
|
|
|
where
|
|
|
locally_compact : LocallyCompactSpace α
|
|
|
hausdorff : T2Space α
|
|
|
no_isolated_points : Rubin.has_no_isolated_points α
|
|
|
locallyDense : LocallyDense G α
|
|
|
#align rubin_action Rubin.RubinAction
|
|
|
|
|
|
end RubinActions
|
|
|
|
|
|
lemma lemma_2_2 (G: Type _) {α : Type _} [Group G] [TopologicalSpace α] [ContinuousMulAction G α] [FaithfulSMul G α]
|
|
|
[T2Space α] [h_lm : LocallyMoving G α]
|
|
|
{U : Set α} (U_open : IsOpen U) (U_nonempty : Set.Nonempty U) :
|
|
|
Monoid.exponent (RigidStabilizer G U) = 0 :=
|
|
|
by
|
|
|
by_contra exp_ne_zero
|
|
|
|
|
|
let ⟨p, ⟨g, g_in_ristU⟩, n, p_in_U, n_pos, hpgn, n_eq_Sup⟩ := Period.period_from_exponent U U_nonempty exp_ne_zero
|
|
|
simp at hpgn
|
|
|
let ⟨V', V'_open, p_in_V', disj'⟩ := disjoint_nbhd_fin (smul_injective_within_period hpgn)
|
|
|
|
|
|
let V := U ∩ V'
|
|
|
have V_open : IsOpen V := U_open.inter V'_open
|
|
|
have p_in_V : p ∈ V := ⟨p_in_U, p_in_V'⟩
|
|
|
have disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V) := by
|
|
|
intro i j i_ne_j
|
|
|
apply Set.disjoint_of_subset
|
|
|
· apply smulImage_subset
|
|
|
apply Set.inter_subset_right
|
|
|
· apply smulImage_subset
|
|
|
apply Set.inter_subset_right
|
|
|
exact disj' i j i_ne_j
|
|
|
|
|
|
let ⟨h, h_in_ristV, h_ne_one⟩ := h_lm.get_nontrivial_rist_elem V_open (Set.nonempty_of_mem p_in_V)
|
|
|
have hg_in_ristU : h * g ∈ RigidStabilizer G U := by
|
|
|
simp [RigidStabilizer]
|
|
|
intro x x_notin_U
|
|
|
rw [mul_smul]
|
|
|
rw [g_in_ristU _ x_notin_U]
|
|
|
have x_notin_V : x ∉ V := fun x_in_V => x_notin_U x_in_V.left
|
|
|
rw [h_in_ristV _ x_notin_V]
|
|
|
let ⟨q, q_in_V, hq_ne_q ⟩ := faithful_rigid_stabilizer_moves_point h_in_ristV h_ne_one
|
|
|
have gpowi_q_notin_V : ∀ (i : Fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • q ∉ V := by
|
|
|
apply smulImage_distinct_of_disjoint_exp n_pos disj
|
|
|
exact q_in_V
|
|
|
|
|
|
-- We have (hg)^i q = g^i q for all 0 < i < n
|
|
|
have hgpow_eq_gpow : ∀ (i : Fin n), (h * g) ^ (i : ℕ) • q = g ^ (i : ℕ) • q := by
|
|
|
intro ⟨i, i_lt_n⟩
|
|
|
simp
|
|
|
induction i with
|
|
|
| zero => simp
|
|
|
| succ i' IH =>
|
|
|
have i'_lt_n: i' < n := Nat.lt_of_succ_lt i_lt_n
|
|
|
have IH := IH i'_lt_n
|
|
|
rw [smul_succ]
|
|
|
rw [IH]
|
|
|
rw [smul_succ]
|
|
|
rw [mul_smul]
|
|
|
rw [<-smul_succ]
|
|
|
|
|
|
-- We can show that `g^(Nat.succ i') • q ∉ V`,
|
|
|
-- which means that with `h` in `RigidStabilizer G V`, `h` fixes that point
|
|
|
apply h_in_ristV (g^(Nat.succ i') • q)
|
|
|
|
|
|
let i'₂ : Fin n := ⟨Nat.succ i', i_lt_n⟩
|
|
|
have h_eq: Nat.succ i' = (i'₂ : ℕ) := by simp
|
|
|
rw [h_eq]
|
|
|
apply smulImage_distinct_of_disjoint_exp
|
|
|
· exact n_pos
|
|
|
· exact disj
|
|
|
· exact q_in_V
|
|
|
· simp
|
|
|
|
|
|
-- Combined with `g^i • q ≠ q`, this yields `(hg)^i • q ≠ q` for all `0 < i < n`
|
|
|
have hgpow_moves : ∀ (i : Fin n), 0 < (i : ℕ) → (h*g)^(i : ℕ) • q ≠ q := by
|
|
|
intro ⟨i, i_lt_n⟩ i_pos
|
|
|
simp at i_pos
|
|
|
rw [hgpow_eq_gpow]
|
|
|
simp
|
|
|
by_contra h'
|
|
|
apply gpowi_q_notin_V ⟨i, i_lt_n⟩
|
|
|
exact i_pos
|
|
|
simp (config := {zeta := false}) only []
|
|
|
rw [h']
|
|
|
exact q_in_V
|
|
|
|
|
|
-- This even holds for `i = n`
|
|
|
have hgpown_moves : (h * g) ^ n • q ≠ q := by
|
|
|
-- Rewrite (hg)^n • q = h * g^n • q
|
|
|
rw [<-Nat.succ_pred n_pos.ne.symm]
|
|
|
rw [pow_succ]
|
|
|
have h_eq := hgpow_eq_gpow ⟨Nat.pred n, Nat.pred_lt_self n_pos⟩
|
|
|
simp at h_eq
|
|
|
rw [mul_smul, h_eq, <-mul_smul, mul_assoc, <-pow_succ]
|
|
|
rw [<-Nat.succ_eq_add_one, Nat.succ_pred n_pos.ne.symm]
|
|
|
|
|
|
-- We first eliminate `g^n • q` by proving that `n = Period g q`
|
|
|
have period_gq_eq_n : Period.period q g = n := by
|
|
|
apply ge_antisymm
|
|
|
{
|
|
|
apply Period.notfix_le_period'
|
|
|
· exact n_pos
|
|
|
· apply Period.period_pos'
|
|
|
· exact Set.nonempty_of_mem p_in_U
|
|
|
· exact exp_ne_zero
|
|
|
· exact q_in_V.left
|
|
|
· exact g_in_ristU
|
|
|
· intro i i_pos
|
|
|
rw [<-hgpow_eq_gpow]
|
|
|
apply hgpow_moves i i_pos
|
|
|
}
|
|
|
{
|
|
|
rw [n_eq_Sup]
|
|
|
apply Period.period_le_Sup_periods'
|
|
|
· exact Set.nonempty_of_mem p_in_U
|
|
|
· exact exp_ne_zero
|
|
|
· exact q_in_V.left
|
|
|
· exact g_in_ristU
|
|
|
}
|
|
|
|
|
|
rw [mul_smul, <-period_gq_eq_n]
|
|
|
rw [Period.pow_period_fix]
|
|
|
-- Finally, we have `h • q ≠ q`
|
|
|
exact hq_ne_q
|
|
|
|
|
|
-- Finally, we derive a contradiction
|
|
|
have ⟨period_hg_pos, period_hg_le_n⟩ := Period.zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero ⟨q, q_in_V.left⟩ ⟨h * g, hg_in_ristU⟩
|
|
|
simp at period_hg_pos
|
|
|
simp at period_hg_le_n
|
|
|
rw [<-n_eq_Sup] at period_hg_le_n
|
|
|
cases (lt_or_eq_of_le period_hg_le_n) with
|
|
|
| inl period_hg_lt_n =>
|
|
|
apply hgpow_moves ⟨Period.period q (h * g), period_hg_lt_n⟩
|
|
|
exact period_hg_pos
|
|
|
simp
|
|
|
apply Period.pow_period_fix
|
|
|
| inr period_hg_eq_n =>
|
|
|
apply hgpown_moves
|
|
|
rw [<-period_hg_eq_n]
|
|
|
apply Period.pow_period_fix
|
|
|
|
|
|
section proposition_2_1
|
|
|
|
|
|
-- TODO: put in a different file and introduce some QoL theorems
|
|
|
def AlgebraicSubgroup {G : Type _} [Group G] (f : G) : Set G :=
|
|
|
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
|
|
|
|
|
|
def AlgebraicCentralizer {G: Type _} (α : Type _) [Group G] [MulAction G α] (f : G) : Set G :=
|
|
|
Set.centralizer (AlgebraicSubgroup f)
|
|
|
|
|
|
-- Given the statement `¬Support α h ⊆ RegularSupport α f`,
|
|
|
-- we construct an open subset within `Support α h \ RegularSupport α f`,
|
|
|
-- and we show that it is non-empty, open and (by construction) disjoint from `Support α f`.
|
|
|
lemma open_set_from_supp_not_subset_rsupp {G α : Type _}
|
|
|
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α]
|
|
|
{f h : G} (not_support_subset_rsupp : ¬Support α h ⊆ RegularSupport α f):
|
|
|
∃ V : Set α, V ⊆ Support α h ∧ Set.Nonempty V ∧ IsOpen V ∧ Disjoint V (Support α f) :=
|
|
|
by
|
|
|
let U := Support α h \ closure (RegularSupport α f)
|
|
|
have U_open : IsOpen U := by
|
|
|
unfold_let
|
|
|
rw [Set.diff_eq_compl_inter]
|
|
|
apply IsOpen.inter
|
|
|
· simp
|
|
|
· exact support_open _
|
|
|
have U_subset_supp_h : U ⊆ Support α h := by simp; apply Set.diff_subset
|
|
|
have U_disj_supp_f : Disjoint U (Support α f) := by
|
|
|
apply Set.disjoint_of_subset_right
|
|
|
· exact subset_closure
|
|
|
· simp
|
|
|
rw [Set.diff_eq_compl_inter]
|
|
|
apply Disjoint.inter_left
|
|
|
apply Disjoint.closure_right; swap; simp
|
|
|
|
|
|
rw [Set.disjoint_compl_left_iff_subset]
|
|
|
apply subset_trans
|
|
|
exact subset_closure
|
|
|
apply closure_mono
|
|
|
apply support_subset_regularSupport
|
|
|
|
|
|
have U_nonempty : Set.Nonempty U; swap
|
|
|
exact ⟨U, U_subset_supp_h, U_nonempty, U_open, U_disj_supp_f⟩
|
|
|
|
|
|
-- We prove that U isn't empty by contradiction:
|
|
|
-- if it is empty, then `Support α h \ closure (RegularSupport α f) = ∅`,
|
|
|
-- so we can show that `Support α h ⊆ RegularSupport α f`,
|
|
|
-- contradicting with our initial hypothesis.
|
|
|
by_contra U_empty
|
|
|
apply not_support_subset_rsupp
|
|
|
show Support α h ⊆ RegularSupport α f
|
|
|
|
|
|
apply subset_of_diff_closure_regular_empty
|
|
|
· apply regularSupport_regular
|
|
|
· exact support_open _
|
|
|
· rw [Set.not_nonempty_iff_eq_empty] at U_empty
|
|
|
exact U_empty
|
|
|
|
|
|
lemma nontrivial_pow_from_exponent_eq_zero {G : Type _} [Group G]
|
|
|
(exp_eq_zero : Monoid.exponent G = 0) :
|
|
|
∀ (n : ℕ), n > 0 → ∃ g : G, g^n ≠ 1 :=
|
|
|
by
|
|
|
intro n n_pos
|
|
|
rw [Monoid.exponent_eq_zero_iff] at exp_eq_zero
|
|
|
unfold Monoid.ExponentExists at exp_eq_zero
|
|
|
rw [<-Classical.not_forall_not, Classical.not_not] at exp_eq_zero
|
|
|
simp at exp_eq_zero
|
|
|
exact exp_eq_zero n n_pos
|
|
|
|
|
|
lemma Commute.inv {G : Type _} [Group G] {f g : G} : Commute f g → Commute f g⁻¹ := by
|
|
|
unfold Commute SemiconjBy
|
|
|
intro h
|
|
|
have h₁ : f = g * f * g⁻¹ := by
|
|
|
nth_rw 1 [<-mul_one f]
|
|
|
rw [<-mul_right_inv g, <-mul_assoc]
|
|
|
rw [h]
|
|
|
nth_rw 2 [h₁]
|
|
|
group
|
|
|
|
|
|
lemma Commute.inv_iff {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f g⁻¹ := ⟨
|
|
|
Commute.inv,
|
|
|
by
|
|
|
nth_rw 2 [<-inv_inv g]
|
|
|
apply Commute.inv
|
|
|
⟩
|
|
|
|
|
|
lemma Commute.inv_iff₂ {G : Type _} [Group G] {f g : G} : Commute f g ↔ Commute f⁻¹ g := ⟨
|
|
|
Commute.symm ∘ Commute.inv_iff.mp ∘ Commute.symm,
|
|
|
Commute.symm ∘ Commute.inv_iff.mpr ∘ Commute.symm
|
|
|
⟩
|
|
|
|
|
|
lemma Commute.into {G : Type _} [Group G] {f g : G} : Commute f g → f * g = g * f := by
|
|
|
unfold Commute SemiconjBy
|
|
|
tauto
|
|
|
|
|
|
lemma proposition_2_1 {G α : Type _}
|
|
|
[Group G] [TopologicalSpace α] [ContinuousMulAction G α] [T2Space α]
|
|
|
[LocallyMoving G α] [h_faithful : FaithfulSMul G α]
|
|
|
(f : G) :
|
|
|
AlgebraicCentralizer α f = RigidStabilizer G (RegularSupport α f) :=
|
|
|
by
|
|
|
apply Set.eq_of_subset_of_subset
|
|
|
swap
|
|
|
{
|
|
|
intro h h_in_rist
|
|
|
simp at h_in_rist
|
|
|
unfold AlgebraicCentralizer
|
|
|
rw [Set.mem_centralizer_iff]
|
|
|
intro g g_in_S
|
|
|
simp [AlgebraicSubgroup] at g_in_S
|
|
|
let ⟨g', ⟨g'_alg_disj, g_eq_g'⟩⟩ := g_in_S
|
|
|
have supp_disj := proposition_1_1_2 f g' g'_alg_disj (α := α)
|
|
|
|
|
|
apply Commute.eq
|
|
|
symm
|
|
|
apply commute_if_rigidStabilizer_and_disjoint (α := α)
|
|
|
· exact h_in_rist
|
|
|
· show Disjoint (RegularSupport α f) (Support α g)
|
|
|
have cl_supp_disj : Disjoint (closure (Support α f)) (Support α g)
|
|
|
swap
|
|
|
|
|
|
apply Set.disjoint_of_subset _ _ cl_supp_disj
|
|
|
· rw [RegularSupport.def]
|
|
|
exact interior_subset
|
|
|
· rfl
|
|
|
· rw [<-g_eq_g']
|
|
|
exact Disjoint.closure_left supp_disj (support_open _)
|
|
|
}
|
|
|
|
|
|
intro h h_in_centralizer
|
|
|
by_contra h_notin_rist
|
|
|
simp at h_notin_rist
|
|
|
rw [rigidStabilizer_support] at h_notin_rist
|
|
|
let ⟨V, V_in_supp_h, V_nonempty, V_open, V_disj_supp_f⟩ := open_set_from_supp_not_subset_rsupp h_notin_rist
|
|
|
let ⟨v, v_in_V⟩ := V_nonempty
|
|
|
have v_moved := V_in_supp_h v_in_V
|
|
|
rw [mem_support] at v_moved
|
|
|
|
|
|
have ⟨W, W_open, v_in_W, W_subset_support, disj_W_img⟩ := disjoint_nbhd_in V_open v_in_V v_moved
|
|
|
|
|
|
have mono_exp := lemma_2_2 G W_open (Set.nonempty_of_mem v_in_W)
|
|
|
let ⟨⟨g, g_in_rist⟩, g12_ne_one⟩ := nontrivial_pow_from_exponent_eq_zero mono_exp 12 (by norm_num)
|
|
|
simp at g12_ne_one
|
|
|
|
|
|
have disj_supports : Disjoint (Support α f) (Support α g) := by
|
|
|
apply Set.disjoint_of_subset_right
|
|
|
· apply rigidStabilizer_support.mp
|
|
|
exact g_in_rist
|
|
|
· apply Set.disjoint_of_subset_right
|
|
|
· exact W_subset_support
|
|
|
· exact V_disj_supp_f.symm
|
|
|
have alg_disj_f_g := proposition_1_1_1 _ _ disj_supports
|
|
|
have g12_in_algebraic_subgroup : g^12 ∈ AlgebraicSubgroup f := by
|
|
|
simp [AlgebraicSubgroup]
|
|
|
use g
|
|
|
constructor
|
|
|
exact ↑alg_disj_f_g
|
|
|
rfl
|
|
|
|
|
|
have h_nc_g12 : ¬Commute (g^12) h := by
|
|
|
have supp_g12_sub_W : Support α (g^12) ⊆ W := by
|
|
|
rw [rigidStabilizer_support] at g_in_rist
|
|
|
calc
|
|
|
Support α (g^12) ⊆ Support α g := by apply support_pow
|
|
|
_ ⊆ W := g_in_rist
|
|
|
have supp_g12_disj_hW : Disjoint (Support α (g^12)) (h •'' W) := by
|
|
|
apply Set.disjoint_of_subset_left
|
|
|
swap
|
|
|
· exact disj_W_img
|
|
|
· exact supp_g12_sub_W
|
|
|
|
|
|
exact not_commute_of_disj_support_smulImage
|
|
|
g12_ne_one
|
|
|
supp_g12_sub_W
|
|
|
supp_g12_disj_hW
|
|
|
|
|
|
apply h_nc_g12
|
|
|
exact h_in_centralizer _ g12_in_algebraic_subgroup
|
|
|
|
|
|
|
|
|
end proposition_2_1
|
|
|
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
|
|
|
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
|
|
|
end Rubin
|
|
|
|
|
|
end Rubin
|