|
|
/-
|
|
|
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
Author : Laurent Bartholdi
|
|
|
-/
|
|
|
import Mathlib.Data.Finset.Basic
|
|
|
import Mathlib.Data.Finset.Card
|
|
|
import Mathlib.Data.Fintype.Perm
|
|
|
import Mathlib.GroupTheory.Subgroup.Basic
|
|
|
import Mathlib.GroupTheory.Commutator
|
|
|
import Mathlib.GroupTheory.GroupAction.Basic
|
|
|
import Mathlib.GroupTheory.Exponent
|
|
|
import Mathlib.GroupTheory.Perm.Basic
|
|
|
import Mathlib.Topology.Basic
|
|
|
import Mathlib.Topology.Compactness.Compact
|
|
|
import Mathlib.Topology.Separation
|
|
|
import Mathlib.Topology.Homeomorph
|
|
|
|
|
|
import Rubin.Tactic
|
|
|
|
|
|
#align_import rubin
|
|
|
|
|
|
namespace Rubin
|
|
|
open Rubin.Tactic
|
|
|
|
|
|
-- TODO: remove
|
|
|
--@[simp]
|
|
|
theorem GroupActionExt.smul_smul' {G α : Type _} [Group G] [MulAction G α] {g h : G} {x : α} :
|
|
|
g • h • x = (g * h) • x :=
|
|
|
smul_smul g h x
|
|
|
#align smul_smul' Rubin.GroupActionExt.smul_smul'
|
|
|
|
|
|
theorem equiv_congr_ne {ι ι' : Type _} (e : ι ≃ ι') {x y : ι} : x ≠ y → e x ≠ e y :=
|
|
|
by
|
|
|
intro x_ne_y
|
|
|
by_contra h
|
|
|
apply x_ne_y
|
|
|
convert congr_arg e.symm h <;> simp only [Equiv.symm_apply_apply]
|
|
|
#align equiv.congr_ne Rubin.equiv_congr_ne
|
|
|
|
|
|
-- this definitely should be added to mathlib!
|
|
|
@[simp, to_additive]
|
|
|
theorem GroupActionExt.subgroup_mk_smul {G α : Type _} [Group G] [MulAction G α]
|
|
|
{S : Subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a :=
|
|
|
rfl
|
|
|
#align Subgroup.mk_smul Rubin.GroupActionExt.subgroup_mk_smul
|
|
|
#align add_subgroup.mk_vadd AddSubgroup.mk_vadd
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section Rubin
|
|
|
|
|
|
variable {G α β : Type _} [Group G]
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section Groups
|
|
|
|
|
|
theorem bracket_mul {f g : G} : ⁅f, g⁆ = f * g * f⁻¹ * g⁻¹ := by tauto
|
|
|
#align bracket_mul Rubin.bracket_mul
|
|
|
|
|
|
def is_algebraically_disjoint (f g : G) :=
|
|
|
∀ h : G,
|
|
|
¬Commute f h →
|
|
|
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
|
|
|
#align is_algebraically_disjoint Rubin.is_algebraically_disjoint
|
|
|
|
|
|
end Groups
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section Actions
|
|
|
|
|
|
variable [MulAction G α]
|
|
|
|
|
|
@[simp]
|
|
|
theorem orbit_bot (G : Type _) [Group G] [MulAction G α] (p : α) :
|
|
|
MulAction.orbit (⊥ : Subgroup G) p = {p} :=
|
|
|
by
|
|
|
ext1
|
|
|
rw [MulAction.mem_orbit_iff]
|
|
|
constructor
|
|
|
· rintro ⟨⟨_, g_bot⟩, g_to_x⟩
|
|
|
rw [← g_to_x, Set.mem_singleton_iff, Rubin.GroupActionExt.subgroup_mk_smul]
|
|
|
exact (Subgroup.mem_bot.mp g_bot).symm ▸ one_smul _ _
|
|
|
exact fun h => ⟨1, Eq.trans (one_smul _ p) (Set.mem_singleton_iff.mp h).symm⟩
|
|
|
#align orbit_bot Rubin.orbit_bot
|
|
|
|
|
|
--------------------------------
|
|
|
section SmulImage
|
|
|
|
|
|
theorem GroupActionExt.smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y :=
|
|
|
congr_arg ((· • ·) g) h
|
|
|
#align smul_congr Rubin.GroupActionExt.smul_congr
|
|
|
|
|
|
theorem GroupActionExt.smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
|
|
|
⟨fun h => (Rubin.GroupActionExt.smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x), fun h =>
|
|
|
(Rubin.GroupActionExt.smul_congr g h).symm.trans (smul_inv_smul g x)⟩
|
|
|
#align smul_eq_iff_inv_smul_eq Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq
|
|
|
|
|
|
theorem GroupActionExt.smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ℕ) :
|
|
|
g • x = x → g ^ n • x = x := by
|
|
|
induction n with
|
|
|
| zero => simp only [pow_zero, one_smul, eq_self_iff_true, imp_true_iff]
|
|
|
| succ n n_ih =>
|
|
|
intro h
|
|
|
nth_rw 2 [← (Rubin.GroupActionExt.smul_congr g (n_ih h)).trans h]
|
|
|
rw [← mul_smul, ← pow_succ]
|
|
|
#align smul_pow_eq_of_smul_eq Rubin.GroupActionExt.smul_pow_eq_of_smul_eq
|
|
|
|
|
|
theorem GroupActionExt.smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ℤ) :
|
|
|
g • x = x → g ^ n • x = x := by
|
|
|
intro h
|
|
|
cases n with
|
|
|
| ofNat n => let res := Rubin.GroupActionExt.smul_pow_eq_of_smul_eq n h; simp; exact res
|
|
|
| negSucc n =>
|
|
|
let res :=
|
|
|
smul_eq_iff_inv_smul_eq.mp (Rubin.GroupActionExt.smul_pow_eq_of_smul_eq (1 + n) h);
|
|
|
simp
|
|
|
rw [add_comm]
|
|
|
exact res
|
|
|
#align smul_zpow_eq_of_smul_eq Rubin.GroupActionExt.smul_zpow_eq_of_smul_eq
|
|
|
|
|
|
def GroupActionExt.is_equivariant (G : Type _) {β : Type _} [Group G] [MulAction G α]
|
|
|
[MulAction G β] (f : α → β) :=
|
|
|
∀ g : G, ∀ x : α, f (g • x) = g • f x
|
|
|
#align is_equivariant Rubin.GroupActionExt.is_equivariant
|
|
|
|
|
|
def SmulImage.smulImage' (g : G) (U : Set α) :=
|
|
|
{x | g⁻¹ • x ∈ U}
|
|
|
#align subset_img' Rubin.SmulImage.smulImage'
|
|
|
|
|
|
def SmulImage.smul_preimage' (g : G) (U : Set α) :=
|
|
|
{x | g • x ∈ U}
|
|
|
#align subset_preimg' Rubin.SmulImage.smul_preimage'
|
|
|
|
|
|
def SmulImage.SmulImage (g : G) (U : Set α) :=
|
|
|
(· • ·) g '' U
|
|
|
#align subset_img Rubin.SmulImage.SmulImage
|
|
|
|
|
|
infixl:60 "•''" => Rubin.SmulImage.SmulImage
|
|
|
|
|
|
theorem SmulImage.smulImage_def {g : G} {U : Set α} : g•''U = (· • ·) g '' U :=
|
|
|
rfl
|
|
|
#align subset_img_def Rubin.SmulImage.smulImage_def
|
|
|
|
|
|
theorem SmulImage.mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g•''U ↔ g⁻¹ • x ∈ U :=
|
|
|
by
|
|
|
rw [Rubin.SmulImage.smulImage_def, Set.mem_image ((· • ·) g) U x]
|
|
|
constructor
|
|
|
· rintro ⟨y, yU, gyx⟩
|
|
|
let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.GroupActionExt.smul_congr g⁻¹ gyx
|
|
|
exact ygx ▸ yU
|
|
|
· intro h
|
|
|
exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩
|
|
|
#align mem_smul'' Rubin.SmulImage.mem_smulImage
|
|
|
|
|
|
theorem SmulImage.mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹•''U ↔ g • x ∈ U :=
|
|
|
by
|
|
|
let msi := @Rubin.SmulImage.mem_smulImage _ _ _ _ x g⁻¹ U
|
|
|
rw [inv_inv] at msi
|
|
|
exact msi
|
|
|
#align mem_inv_smul'' Rubin.SmulImage.mem_inv_smulImage
|
|
|
|
|
|
theorem SmulImage.mul_smulImage (g h : G) (U : Set α) : g * h•''U = g•''(h•''U) :=
|
|
|
by
|
|
|
ext
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage, ←
|
|
|
mul_smul, mul_inv_rev]
|
|
|
#align mul_smul'' Rubin.SmulImage.mul_smulImage
|
|
|
|
|
|
@[simp]
|
|
|
theorem SmulImage.smulImage_smulImage {g h : G} {U : Set α} : g•''(h•''U) = g * h•''U :=
|
|
|
(Rubin.SmulImage.mul_smulImage g h U).symm
|
|
|
#align smul''_smul'' Rubin.SmulImage.smulImage_smulImage
|
|
|
|
|
|
@[simp]
|
|
|
theorem SmulImage.one_smulImage (U : Set α) : (1 : G)•''U = U :=
|
|
|
by
|
|
|
ext
|
|
|
rw [Rubin.SmulImage.mem_smulImage, inv_one, one_smul]
|
|
|
#align one_smul'' Rubin.SmulImage.one_smulImage
|
|
|
|
|
|
theorem SmulImage.disjoint_smulImage (g : G) {U V : Set α} :
|
|
|
Disjoint U V → Disjoint (g•''U) (g•''V) :=
|
|
|
by
|
|
|
intro disjoint_U_V
|
|
|
rw [Set.disjoint_left]
|
|
|
rw [Set.disjoint_left] at disjoint_U_V
|
|
|
intro x x_in_gU
|
|
|
by_contra h
|
|
|
exact (disjoint_U_V (mem_smulImage.mp x_in_gU)) (mem_smulImage.mp h)
|
|
|
#align disjoint_smul'' Rubin.SmulImage.disjoint_smulImage
|
|
|
|
|
|
-- TODO: check if this is actually needed
|
|
|
theorem SmulImage.smulImage_congr (g : G) {U V : Set α} : U = V → g•''U = g•''V :=
|
|
|
congr_arg fun W : Set α => g•''W
|
|
|
#align smul''_congr Rubin.SmulImage.smulImage_congr
|
|
|
|
|
|
theorem SmulImage.smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g•''U ⊆ g•''V :=
|
|
|
by
|
|
|
intro h1 x
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
|
|
|
exact fun h2 => h1 h2
|
|
|
#align smul''_subset Rubin.SmulImage.smulImage_subset
|
|
|
|
|
|
theorem SmulImage.smulImage_union (g : G) {U V : Set α} : g•''U ∪ V = (g•''U) ∪ (g•''V) :=
|
|
|
by
|
|
|
ext
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.SmulImage.mem_smulImage,
|
|
|
Rubin.SmulImage.mem_smulImage]
|
|
|
#align smul''_union Rubin.SmulImage.smulImage_union
|
|
|
|
|
|
theorem SmulImage.smulImage_inter (g : G) {U V : Set α} : g•''U ∩ V = (g•''U) ∩ (g•''V) :=
|
|
|
by
|
|
|
ext
|
|
|
rw [Set.mem_inter_iff, Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage,
|
|
|
Rubin.SmulImage.mem_smulImage, Set.mem_inter_iff]
|
|
|
#align smul''_inter Rubin.SmulImage.smulImage_inter
|
|
|
|
|
|
theorem SmulImage.smulImage_eq_inv_preimage {g : G} {U : Set α} : g•''U = (· • ·) g⁻¹ ⁻¹' U :=
|
|
|
by
|
|
|
ext
|
|
|
constructor
|
|
|
· intro h; rw [Set.mem_preimage]; exact mem_smulImage.mp h
|
|
|
· intro h; rw [Rubin.SmulImage.mem_smulImage]; exact Set.mem_preimage.mp h
|
|
|
#align smul''_eq_inv_preimage Rubin.SmulImage.smulImage_eq_inv_preimage
|
|
|
|
|
|
theorem SmulImage.smulImage_eq_of_smul_eq {g h : G} {U : Set α} :
|
|
|
(∀ x ∈ U, g • x = h • x) → g•''U = h•''U :=
|
|
|
by
|
|
|
intro hU
|
|
|
ext x
|
|
|
rw [Rubin.SmulImage.mem_smulImage, Rubin.SmulImage.mem_smulImage]
|
|
|
constructor
|
|
|
· intro k; let a := congr_arg ((· • ·) h⁻¹) (hU (g⁻¹ • x) k);
|
|
|
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k
|
|
|
· intro k; let a := congr_arg ((· • ·) g⁻¹) (hU (h⁻¹ • x) k);
|
|
|
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k
|
|
|
#align smul''_eq_of_smul_eq Rubin.SmulImage.smulImage_eq_of_smul_eq
|
|
|
|
|
|
end SmulImage
|
|
|
|
|
|
--------------------------------
|
|
|
section Support
|
|
|
|
|
|
def SmulSupport.Support (α : Type _) [MulAction G α] (g : G) :=
|
|
|
{x : α | g • x ≠ x}
|
|
|
#align support Rubin.SmulSupport.Support
|
|
|
|
|
|
theorem SmulSupport.support_eq_not_fixed_by {g : G}:
|
|
|
Rubin.SmulSupport.Support α g = (MulAction.fixedBy α g)ᶜ := by tauto
|
|
|
#align support_eq_not_fixed_by Rubin.SmulSupport.support_eq_not_fixed_by
|
|
|
|
|
|
theorem SmulSupport.mem_support {x : α} {g : G} :
|
|
|
x ∈ Rubin.SmulSupport.Support α g ↔ g • x ≠ x := by tauto
|
|
|
#align mem_support Rubin.SmulSupport.mem_support
|
|
|
|
|
|
theorem SmulSupport.not_mem_support {x : α} {g : G} :
|
|
|
x ∉ Rubin.SmulSupport.Support α g ↔ g • x = x := by
|
|
|
rw [Rubin.SmulSupport.mem_support, Classical.not_not]
|
|
|
#align mem_not_support Rubin.SmulSupport.not_mem_support
|
|
|
|
|
|
theorem SmulSupport.smul_mem_support {g : G} {x : α} :
|
|
|
x ∈ Rubin.SmulSupport.Support α g → g • x ∈ Rubin.SmulSupport.Support α g := fun h =>
|
|
|
h ∘ smul_left_cancel g
|
|
|
#align smul_in_support Rubin.SmulSupport.smul_mem_support
|
|
|
|
|
|
theorem SmulSupport.inv_smul_mem_support {g : G} {x : α} :
|
|
|
x ∈ Rubin.SmulSupport.Support α g → g⁻¹ • x ∈ Rubin.SmulSupport.Support α g := fun h k =>
|
|
|
h (smul_inv_smul g x ▸ Rubin.GroupActionExt.smul_congr g k)
|
|
|
#align inv_smul_in_support Rubin.SmulSupport.inv_smul_mem_support
|
|
|
|
|
|
theorem SmulSupport.fixed_of_disjoint {g : G} {x : α} {U : Set α} :
|
|
|
x ∈ U → Disjoint U (Rubin.SmulSupport.Support α g) → g • x = x :=
|
|
|
fun x_in_U disjoint_U_support =>
|
|
|
Rubin.SmulSupport.not_mem_support.mp (Set.disjoint_left.mp disjoint_U_support x_in_U)
|
|
|
#align fixed_of_disjoint Rubin.SmulSupport.fixed_of_disjoint
|
|
|
|
|
|
theorem SmulSupport.fixed_smulImage_in_support (g : G) {U : Set α} :
|
|
|
Rubin.SmulSupport.Support α g ⊆ U → g•''U = U :=
|
|
|
by
|
|
|
intro support_in_U
|
|
|
ext x
|
|
|
cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with xmoved xfixed
|
|
|
exact
|
|
|
⟨fun _ => support_in_U xmoved, fun _ =>
|
|
|
SmulImage.mem_smulImage.mpr (support_in_U (Rubin.SmulSupport.inv_smul_mem_support xmoved))⟩
|
|
|
rw [Rubin.SmulImage.mem_smulImage, GroupActionExt.smul_eq_iff_inv_smul_eq.mp (not_mem_support.mp xfixed)]
|
|
|
#align fixes_subset_within_support Rubin.SmulSupport.fixed_smulImage_in_support
|
|
|
|
|
|
theorem SmulSupport.smulImage_subset_in_support (g : G) (U V : Set α) :
|
|
|
U ⊆ V → Rubin.SmulSupport.Support α g ⊆ V → g•''U ⊆ V := fun U_in_V support_in_V =>
|
|
|
Rubin.SmulSupport.fixed_smulImage_in_support g support_in_V ▸
|
|
|
Rubin.SmulImage.smulImage_subset g U_in_V
|
|
|
#align moves_subset_within_support Rubin.SmulSupport.smulImage_subset_in_support
|
|
|
|
|
|
theorem SmulSupport.support_mul (g h : G) (α : Type _) [MulAction G α] :
|
|
|
Rubin.SmulSupport.Support α (g * h) ⊆
|
|
|
Rubin.SmulSupport.Support α g ∪ Rubin.SmulSupport.Support α h :=
|
|
|
by
|
|
|
intro x x_in_support
|
|
|
by_contra h_support
|
|
|
|
|
|
let res := not_or.mp h_support
|
|
|
exact
|
|
|
x_in_support
|
|
|
((mul_smul g h x).trans
|
|
|
((congr_arg ((· • ·) g) (not_mem_support.mp res.2)).trans <| not_mem_support.mp res.1))
|
|
|
#align support_mul Rubin.SmulSupport.support_mul
|
|
|
|
|
|
theorem SmulSupport.support_conjugate (α : Type _) [MulAction G α] (g h : G) :
|
|
|
Rubin.SmulSupport.Support α (h * g * h⁻¹) = h•''Rubin.SmulSupport.Support α g :=
|
|
|
by
|
|
|
ext x
|
|
|
rw [Rubin.SmulSupport.mem_support, Rubin.SmulImage.mem_smulImage, Rubin.SmulSupport.mem_support,
|
|
|
mul_smul, mul_smul]
|
|
|
constructor
|
|
|
· intro h1; by_contra h2; exact h1 ((congr_arg ((· • ·) h) h2).trans (smul_inv_smul _ _))
|
|
|
· intro h1; by_contra h2; exact h1 (inv_smul_smul h (g • h⁻¹ • x) ▸ congr_arg ((· • ·) h⁻¹) h2)
|
|
|
#align support_conjugate Rubin.SmulSupport.support_conjugate
|
|
|
|
|
|
theorem SmulSupport.support_inv (α : Type _) [MulAction G α] (g : G) :
|
|
|
Rubin.SmulSupport.Support α g⁻¹ = Rubin.SmulSupport.Support α g :=
|
|
|
by
|
|
|
ext x
|
|
|
rw [Rubin.SmulSupport.mem_support, Rubin.SmulSupport.mem_support]
|
|
|
constructor
|
|
|
· intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mp h2)
|
|
|
· intro h1; by_contra h2; exact h1 (GroupActionExt.smul_eq_iff_inv_smul_eq.mpr h2)
|
|
|
#align support_inv Rubin.SmulSupport.support_inv
|
|
|
|
|
|
theorem SmulSupport.support_pow (α : Type _) [MulAction G α] (g : G) (j : ℕ) :
|
|
|
Rubin.SmulSupport.Support α (g ^ j) ⊆ Rubin.SmulSupport.Support α g :=
|
|
|
by
|
|
|
intro x xmoved
|
|
|
by_contra xfixed
|
|
|
rw [Rubin.SmulSupport.mem_support] at xmoved
|
|
|
induction j with
|
|
|
| zero => apply xmoved; rw [pow_zero g, one_smul]
|
|
|
| succ j j_ih =>
|
|
|
apply xmoved
|
|
|
let j_ih := (congr_arg ((· • ·) g) (not_not.mp j_ih)).trans (not_mem_support.mp xfixed)
|
|
|
simp at j_ih
|
|
|
rw [← mul_smul, ← pow_succ] at j_ih
|
|
|
exact j_ih
|
|
|
#align support_pow Rubin.SmulSupport.support_pow
|
|
|
|
|
|
theorem SmulSupport.support_comm (α : Type _) [MulAction G α] (g h : G) :
|
|
|
Rubin.SmulSupport.Support α ⁅g, h⁆ ⊆
|
|
|
Rubin.SmulSupport.Support α h ∪ (g•''Rubin.SmulSupport.Support α h) :=
|
|
|
by
|
|
|
intro x x_in_support
|
|
|
by_contra all_fixed
|
|
|
rw [Set.mem_union] at all_fixed
|
|
|
cases' @or_not (h • x = x) with xfixed xmoved
|
|
|
· rw [Rubin.SmulSupport.mem_support, Rubin.bracket_mul, mul_smul,
|
|
|
GroupActionExt.smul_eq_iff_inv_smul_eq.mp xfixed, ← Rubin.SmulSupport.mem_support] at x_in_support
|
|
|
exact
|
|
|
((Rubin.SmulSupport.support_conjugate α h g).symm ▸ (not_or.mp all_fixed).2)
|
|
|
x_in_support
|
|
|
· exact all_fixed (Or.inl xmoved)
|
|
|
#align support_comm Rubin.SmulSupport.support_comm
|
|
|
|
|
|
theorem SmulSupport.disjoint_support_comm (f g : G) {U : Set α} :
|
|
|
Rubin.SmulSupport.Support α f ⊆ U → Disjoint U (g•''U) → ∀ x ∈ U, ⁅f, g⁆ • x = f • x :=
|
|
|
by
|
|
|
intro support_in_U disjoint_U x x_in_U
|
|
|
have support_conj : Rubin.SmulSupport.Support α (g * f⁻¹ * g⁻¹) ⊆ g•''U :=
|
|
|
((Rubin.SmulSupport.support_conjugate α f⁻¹ g).trans
|
|
|
(Rubin.SmulImage.smulImage_congr g (Rubin.SmulSupport.support_inv α f))).symm ▸
|
|
|
Rubin.SmulImage.smulImage_subset g support_in_U
|
|
|
have goal :=
|
|
|
(congr_arg ((· • ·) f)
|
|
|
(Rubin.SmulSupport.fixed_of_disjoint x_in_U
|
|
|
(Set.disjoint_of_subset_right support_conj disjoint_U))).symm
|
|
|
simp at goal
|
|
|
sorry
|
|
|
-- rw [mul_smul, mul_smul] at goal
|
|
|
|
|
|
-- exact goal.symm
|
|
|
#align disjoint_support_comm Rubin.SmulSupport.disjoint_support_comm
|
|
|
|
|
|
end Support
|
|
|
|
|
|
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
|
|
|
def rigidStabilizer' (G : Type _) [Group G] [MulAction G α] (U : Set α) : Set G :=
|
|
|
{g : G | ∀ x : α, g • x = x ∨ x ∈ U}
|
|
|
#align rigid_stabilizer' Rubin.rigidStabilizer'
|
|
|
|
|
|
/- ./././Mathport/Syntax/Translate/Basic.lean:641:2: warning: expanding binder collection (x «expr ∉ » U) -/
|
|
|
def rigidStabilizer (G : Type _) [Group G] [MulAction G α] (U : Set α) : Subgroup G
|
|
|
where
|
|
|
carrier := {g : G | ∀ (x) (_ : x ∉ U), g • x = x}
|
|
|
mul_mem' ha hb x x_notin_U := by rw [mul_smul, hb x x_notin_U, ha x x_notin_U]
|
|
|
inv_mem' hg x x_notin_U := Rubin.GroupActionExt.smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U)
|
|
|
one_mem' x _ := one_smul G x
|
|
|
#align rigid_stabilizer Rubin.rigidStabilizer
|
|
|
|
|
|
theorem rist_supported_in_set {g : G} {U : Set α} :
|
|
|
g ∈ rigidStabilizer G U → Rubin.SmulSupport.Support α g ⊆ U := fun h x x_in_support =>
|
|
|
by_contradiction (x_in_support ∘ h x)
|
|
|
#align rist_supported_in_set Rubin.rist_supported_in_set
|
|
|
|
|
|
theorem rist_ss_rist {U V : Set α} (V_ss_U : V ⊆ U) :
|
|
|
(rigidStabilizer G V : Set G) ⊆ (rigidStabilizer G U : Set G) :=
|
|
|
by
|
|
|
intro g g_in_ristV x x_notin_U
|
|
|
have x_notin_V : x ∉ V := by intro x_in_V; exact x_notin_U (V_ss_U x_in_V)
|
|
|
exact g_in_ristV x x_notin_V
|
|
|
#align rist_ss_rist Rubin.rist_ss_rist
|
|
|
|
|
|
end Actions
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section TopologicalActions
|
|
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
|
|
class Topological.ContinuousMulAction (G α : Type _) [Group G] [TopologicalSpace α] extends
|
|
|
MulAction G α where
|
|
|
continuous : ∀ g : G, Continuous (@SMul.smul G α _ g)
|
|
|
#align continuous_mul_action Rubin.Topological.ContinuousMulAction
|
|
|
|
|
|
structure Topological.equivariant_homeomorph (G α β : Type _) [Group G] [TopologicalSpace α]
|
|
|
[TopologicalSpace β] [MulAction G α] [MulAction G β] extends Homeomorph α β where
|
|
|
equivariant : GroupActionExt.is_equivariant G toFun
|
|
|
#align equivariant_homeomorph Rubin.Topological.equivariant_homeomorph
|
|
|
|
|
|
theorem Topological.equivariant_fun [MulAction G α] [MulAction G β]
|
|
|
(h : Rubin.Topological.equivariant_homeomorph G α β) :
|
|
|
Rubin.GroupActionExt.is_equivariant G h.toFun :=
|
|
|
h.equivariant
|
|
|
#align equivariant_fun Rubin.Topological.equivariant_fun
|
|
|
|
|
|
theorem Topological.equivariant_inv [MulAction G α] [MulAction G β]
|
|
|
(h : Rubin.Topological.equivariant_homeomorph G α β) :
|
|
|
Rubin.GroupActionExt.is_equivariant G h.invFun :=
|
|
|
by
|
|
|
intro g x
|
|
|
symm
|
|
|
let e := congr_arg h.invFun (h.equivariant g (h.invFun x))
|
|
|
rw [h.left_inv _, h.right_inv _] at e
|
|
|
exact e
|
|
|
#align equivariant_inv Rubin.Topological.equivariant_inv
|
|
|
|
|
|
variable [Rubin.Topological.ContinuousMulAction G α]
|
|
|
|
|
|
theorem Topological.img_open_open (g : G) (U : Set α) (h : IsOpen U)
|
|
|
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (g•''U) :=
|
|
|
by
|
|
|
rw [Rubin.SmulImage.smulImage_eq_inv_preimage]
|
|
|
exact Continuous.isOpen_preimage (Rubin.Topological.ContinuousMulAction.continuous g⁻¹) U h
|
|
|
#align img_open_open Rubin.Topological.img_open_open
|
|
|
|
|
|
theorem Topological.support_open (g : G) [TopologicalSpace α] [T2Space α]
|
|
|
[Rubin.Topological.ContinuousMulAction G α] : IsOpen (Rubin.SmulSupport.Support α g) :=
|
|
|
by
|
|
|
apply isOpen_iff_forall_mem_open.mpr
|
|
|
intro x xmoved
|
|
|
rcases T2Space.t2 (g • x) x xmoved with ⟨U, V, open_U, open_V, gx_in_U, x_in_V, disjoint_U_V⟩
|
|
|
exact
|
|
|
⟨V ∩ (g⁻¹•''U), fun y yW =>
|
|
|
-- TODO: don't use @-notation here
|
|
|
@Disjoint.ne_of_mem α U V disjoint_U_V (g • y)
|
|
|
(SmulImage.mem_inv_smulImage.mp (Set.mem_of_mem_inter_right yW))
|
|
|
y
|
|
|
(Set.mem_of_mem_inter_left yW),
|
|
|
IsOpen.inter open_V (Rubin.Topological.img_open_open g⁻¹ U open_U),
|
|
|
⟨x_in_V, SmulImage.mem_inv_smulImage.mpr gx_in_U⟩⟩
|
|
|
#align support_open Rubin.Topological.support_open
|
|
|
|
|
|
end TopologicalActions
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section FaithfulActions
|
|
|
|
|
|
variable [MulAction G α] [FaithfulSMul G α]
|
|
|
|
|
|
theorem faithful_moves_point₁ {g : G} (h2 : ∀ x : α, g • x = x) : g = 1 :=
|
|
|
haveI h3 : ∀ x : α, g • x = (1 : G) • x := fun x => (h2 x).symm ▸ (one_smul G x).symm
|
|
|
eq_of_smul_eq_smul h3
|
|
|
#align faithful_moves_point Rubin.faithful_moves_point₁
|
|
|
|
|
|
theorem faithful_moves_point'₁ {g : G} (α : Type _) [MulAction G α] [FaithfulSMul G α] :
|
|
|
g ≠ 1 → ∃ x : α, g • x ≠ x := fun k =>
|
|
|
by_contradiction fun h => k <| Rubin.faithful_moves_point₁ <| Classical.not_exists_not.mp h
|
|
|
#align faithful_moves_point' Rubin.faithful_moves_point'₁
|
|
|
|
|
|
theorem faithful_rigid_stabilizer_moves_point {g : G} {U : Set α} :
|
|
|
g ∈ rigidStabilizer G U → g ≠ 1 → ∃ x ∈ U, g • x ≠ x :=
|
|
|
by
|
|
|
intro g_rigid g_ne_one
|
|
|
rcases Rubin.faithful_moves_point'₁ α g_ne_one with ⟨x, xmoved⟩
|
|
|
exact ⟨x, rist_supported_in_set g_rigid xmoved, xmoved⟩
|
|
|
#align faithful_rist_moves_point Rubin.faithful_rigid_stabilizer_moves_point
|
|
|
|
|
|
theorem ne_one_support_nonempty {g : G} : g ≠ 1 → (Rubin.SmulSupport.Support α g).Nonempty :=
|
|
|
by
|
|
|
intro h1
|
|
|
cases' Rubin.faithful_moves_point'₁ α h1 with x h
|
|
|
use x
|
|
|
exact h
|
|
|
#align ne_one_support_nempty Rubin.ne_one_support_nonempty
|
|
|
|
|
|
-- FIXME: somehow clashes with another definition
|
|
|
theorem disjoint_commute₁ {f g : G} :
|
|
|
Disjoint (Rubin.SmulSupport.Support α f) (Rubin.SmulSupport.Support α g) → Commute f g :=
|
|
|
by
|
|
|
intro hdisjoint
|
|
|
rw [← commutatorElement_eq_one_iff_commute]
|
|
|
apply @Rubin.faithful_moves_point₁ _ α
|
|
|
intro x
|
|
|
rw [Rubin.bracket_mul, mul_smul, mul_smul, mul_smul]
|
|
|
cases' @or_not (x ∈ Rubin.SmulSupport.Support α f) with hfmoved hffixed
|
|
|
·
|
|
|
rw [GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp (Set.disjoint_left.mp hdisjoint hfmoved)),
|
|
|
SmulSupport.not_mem_support.mp
|
|
|
(Set.disjoint_left.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hfmoved)),
|
|
|
smul_inv_smul]
|
|
|
cases' @or_not (x ∈ Rubin.SmulSupport.Support α g) with hgmoved hgfixed
|
|
|
·
|
|
|
rw [GroupActionExt.smul_eq_iff_inv_smul_eq.mp
|
|
|
(SmulSupport.not_mem_support.mp <|
|
|
|
Set.disjoint_right.mp hdisjoint (Rubin.SmulSupport.inv_smul_mem_support hgmoved)),
|
|
|
smul_inv_smul, SmulSupport.not_mem_support.mp hffixed]
|
|
|
·
|
|
|
rw [
|
|
|
GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp hgfixed),
|
|
|
GroupActionExt.smul_eq_iff_inv_smul_eq.mp (SmulSupport.not_mem_support.mp hffixed),
|
|
|
SmulSupport.not_mem_support.mp hgfixed,
|
|
|
SmulSupport.not_mem_support.mp hffixed
|
|
|
]
|
|
|
#align disjoint_commute Rubin.disjoint_commute₁
|
|
|
|
|
|
end FaithfulActions
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section RubinActions
|
|
|
|
|
|
variable [TopologicalSpace α] [TopologicalSpace β]
|
|
|
|
|
|
def has_no_isolated_points (α : Type _) [TopologicalSpace α] :=
|
|
|
∀ x : α, (nhdsWithin x ({x}ᶜ)) ≠ ⊥
|
|
|
#align has_no_isolated_points Rubin.has_no_isolated_points
|
|
|
|
|
|
def is_locally_dense (G α : Type _) [Group G] [TopologicalSpace α] [MulAction G α] :=
|
|
|
∀ U : Set α, ∀ p ∈ U, p ∈ interior (closure (MulAction.orbit (rigidStabilizer G U) p))
|
|
|
#align is_locally_dense Rubin.is_locally_dense
|
|
|
|
|
|
structure RubinAction (G α : Type _) extends Group G, TopologicalSpace α, MulAction G α,
|
|
|
FaithfulSMul G α where
|
|
|
locally_compact : LocallyCompactSpace α
|
|
|
hausdorff : T2Space α
|
|
|
no_isolated_points : Rubin.has_no_isolated_points α
|
|
|
locallyDense : Rubin.is_locally_dense G α
|
|
|
#align rubin_action Rubin.RubinAction
|
|
|
|
|
|
end RubinActions
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section Rubin.Period.period
|
|
|
|
|
|
variable [MulAction G α]
|
|
|
|
|
|
noncomputable def Period.period (p : α) (g : G) : ℕ :=
|
|
|
sInf {n : ℕ | n > 0 ∧ g ^ n • p = p}
|
|
|
#align period Rubin.Period.period
|
|
|
|
|
|
theorem Period.period_le_fix {p : α} {g : G} {m : ℕ} (m_pos : m > 0)
|
|
|
(gmp_eq_p : g ^ m • p = p) : 0 < Rubin.Period.period p g ∧ Rubin.Period.period p g ≤ m :=
|
|
|
by
|
|
|
constructor
|
|
|
· by_contra h'; have period_zero : Rubin.Period.period p g = 0; linarith;
|
|
|
rcases Nat.sInf_eq_zero.1 period_zero with ⟨cont, h_1⟩ | h; linarith;
|
|
|
exact Set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨m_pos, gmp_eq_p⟩
|
|
|
exact Nat.sInf_le ⟨m_pos, gmp_eq_p⟩
|
|
|
#align period_le_fix Rubin.Period.period_le_fix
|
|
|
|
|
|
theorem Period.notfix_le_period {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
(period_pos : Rubin.Period.period p g > 0) (pmoves : ∀ i : ℕ, 0 < i → i < n → g ^ i • p ≠ p) :
|
|
|
n ≤ Rubin.Period.period p g := by
|
|
|
by_contra period_le
|
|
|
exact
|
|
|
(pmoves (Rubin.Period.period p g) period_pos (not_le.mp period_le))
|
|
|
(Nat.sInf_mem (Nat.nonempty_of_pos_sInf period_pos)).2
|
|
|
#align notfix_le_period Rubin.Period.notfix_le_period
|
|
|
|
|
|
theorem Period.notfix_le_period' {p : α} {g : G} {n : ℕ} (n_pos : n > 0)
|
|
|
(period_pos : Rubin.Period.period p g > 0)
|
|
|
(pmoves : ∀ i : Fin n, 0 < (i : ℕ) → g ^ (i : ℕ) • p ≠ p) : n ≤ Rubin.Period.period p g :=
|
|
|
Rubin.Period.notfix_le_period n_pos period_pos fun (i : ℕ) (i_pos : 0 < i) (i_lt_n : i < n) =>
|
|
|
pmoves (⟨i, i_lt_n⟩ : Fin n) i_pos
|
|
|
#align notfix_le_period' Rubin.Period.notfix_le_period'
|
|
|
|
|
|
theorem Period.period_neutral_eq_one (p : α) : Rubin.Period.period p (1 : G) = 1 :=
|
|
|
by
|
|
|
have : 0 < Rubin.Period.period p (1 : G) ∧ Rubin.Period.period p (1 : G) ≤ 1 :=
|
|
|
Rubin.Period.period_le_fix (by norm_num : 1 > 0)
|
|
|
(by group_action :
|
|
|
(1 : G) ^ 1 • p = p)
|
|
|
linarith
|
|
|
#align period_neutral_eq_one Rubin.Period.period_neutral_eq_one
|
|
|
|
|
|
def Period.periods (U : Set α) (H : Subgroup G) : Set ℕ :=
|
|
|
{n : ℕ | ∃ (p : α) (g : H), p ∈ U ∧ Rubin.Period.period (p : α) (g : G) = n}
|
|
|
#align periods Rubin.Period.periods
|
|
|
|
|
|
-- TODO: split into multiple lemmas
|
|
|
theorem Period.periods_lemmas {U : Set α} (U_nonempty : Set.Nonempty U) {H : Subgroup G}
|
|
|
(exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
(Rubin.Period.periods U H).Nonempty ∧
|
|
|
BddAbove (Rubin.Period.periods U H) ∧
|
|
|
∃ (m : ℕ) (m_pos : m > 0), ∀ (p : α) (g : H), g ^ m • p = p :=
|
|
|
by
|
|
|
rcases Monoid.exponentExists_iff_ne_zero.2 exp_ne_zero with ⟨m, m_pos, gm_eq_one⟩
|
|
|
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p := by
|
|
|
intro p g; rw [gm_eq_one g];
|
|
|
group_action
|
|
|
have periods_nonempty : (Rubin.Period.periods U H).Nonempty := by
|
|
|
use 1
|
|
|
let p := Set.Nonempty.some U_nonempty; use p
|
|
|
use 1
|
|
|
constructor
|
|
|
· exact Set.Nonempty.some_mem U_nonempty
|
|
|
· exact Rubin.Period.period_neutral_eq_one p
|
|
|
|
|
|
have periods_bounded : BddAbove (Rubin.Period.periods U H) := by
|
|
|
use m; intro some_period hperiod;
|
|
|
rcases hperiod with ⟨p, g, hperiod⟩
|
|
|
rw [← hperiod.2]
|
|
|
exact (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).2
|
|
|
exact ⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
|
|
|
#align period_lemma Rubin.Period.periods_lemmas
|
|
|
|
|
|
theorem Period.period_from_exponent (U : Set α) (U_nonempty : U.Nonempty) {H : Subgroup G}
|
|
|
(exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
∃ (p : α) (g : H) (n : ℕ),
|
|
|
p ∈ U ∧ n > 0 ∧ Rubin.Period.period (p : α) (g : G) = n ∧ n = sSup (Rubin.Period.periods U H) :=
|
|
|
by
|
|
|
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
|
|
|
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
|
|
|
rcases Nat.sSup_mem periods_nonempty periods_bounded with ⟨p, g, hperiod⟩
|
|
|
use p
|
|
|
use g
|
|
|
use sSup (Rubin.Period.periods U H)
|
|
|
-- TODO: cleanup?
|
|
|
exact ⟨
|
|
|
hperiod.1,
|
|
|
hperiod.2 ▸ (Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
|
|
|
hperiod.2,
|
|
|
rfl
|
|
|
⟩
|
|
|
#align period_from_exponent Rubin.Period.period_from_exponent
|
|
|
|
|
|
theorem Period.zero_lt_period_le_Sup_periods {U : Set α} (U_nonempty : U.Nonempty)
|
|
|
{H : Subgroup G} (exp_ne_zero : Monoid.exponent H ≠ 0) :
|
|
|
∀ (p : U) (g : H),
|
|
|
0 < Rubin.Period.period (p : α) (g : G) ∧
|
|
|
Rubin.Period.period (p : α) (g : G) ≤ sSup (Rubin.Period.periods U H) :=
|
|
|
by
|
|
|
rcases Rubin.Period.periods_lemmas U_nonempty exp_ne_zero with
|
|
|
⟨periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p⟩
|
|
|
intro p g
|
|
|
have period_in_periods : Rubin.Period.period (p : α) (g : G) ∈ Rubin.Period.periods U H := by
|
|
|
use p; use g
|
|
|
simp
|
|
|
exact
|
|
|
⟨(Rubin.Period.period_le_fix m_pos (gmp_eq_p p g)).1,
|
|
|
le_csSup periods_bounded period_in_periods⟩
|
|
|
#align zero_lt_period_le_Sup_periods Rubin.Period.zero_lt_period_le_Sup_periods
|
|
|
|
|
|
theorem Period.pow_period_fix (p : α) (g : G) : g ^ Rubin.Period.period p g • p = p :=
|
|
|
by
|
|
|
cases eq_zero_or_neZero (Rubin.Period.period p g) with
|
|
|
| inl h => rw [h]; simp
|
|
|
| inr h =>
|
|
|
exact
|
|
|
(Nat.sInf_mem
|
|
|
(Nat.nonempty_of_pos_sInf
|
|
|
(Nat.pos_of_ne_zero (@NeZero.ne _ _ (Rubin.Period.period p g) h)))).2
|
|
|
#align pow_period_fix Rubin.Period.pow_period_fix
|
|
|
|
|
|
end Rubin.Period.period
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section AlgebraicDisjointness
|
|
|
|
|
|
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α] [FaithfulSMul G α]
|
|
|
|
|
|
def Disjointness.IsLocallyMoving (G α : Type _) [Group G] [TopologicalSpace α]
|
|
|
[MulAction G α] :=
|
|
|
∀ U : Set α, IsOpen U → Set.Nonempty U → rigidStabilizer G U ≠ ⊥
|
|
|
#align is_locally_moving Rubin.Disjointness.IsLocallyMoving
|
|
|
|
|
|
-- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin
|
|
|
-- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU,
|
|
|
-- by_contra,
|
|
|
-- have some_in_U := ildGα U neU.some neU.some_mem,
|
|
|
-- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U,
|
|
|
-- tauto
|
|
|
-- end
|
|
|
-- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin
|
|
|
-- intro xmoved,
|
|
|
-- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩,
|
|
|
-- let U := (g⁻¹ •'' V) ∩ W,
|
|
|
-- use U,
|
|
|
-- split,
|
|
|
-- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W,
|
|
|
-- split,
|
|
|
-- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩,
|
|
|
-- exact Set.disjoint_of_subset
|
|
|
-- (Set.inter_subset_right (g⁻¹•''V) W)
|
|
|
-- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (Set.mem_of_mem_inter_left (mem_smulImage.mp hy)) : g•''U ⊆ V)
|
|
|
-- disjoint_V_W.symm
|
|
|
-- end
|
|
|
-- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin
|
|
|
-- intros open_V x_in_V xmoved,
|
|
|
-- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩,
|
|
|
-- let U := W ∩ V,
|
|
|
-- use U,
|
|
|
-- split,
|
|
|
-- exact is_open.inter open_W open_V,
|
|
|
-- split,
|
|
|
-- exact ⟨x_in_W,x_in_V⟩,
|
|
|
-- split,
|
|
|
-- exact Set.inter_subset_right W V,
|
|
|
-- exact Set.disjoint_of_subset
|
|
|
-- (Set.inter_subset_left W V)
|
|
|
-- ((@smul''_inter _ _ _ _ g W V).symm ▸ Set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W)
|
|
|
-- disjoint_W
|
|
|
-- end
|
|
|
-- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : (⋃(i : fin 2 × fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) := begin
|
|
|
-- ext,
|
|
|
-- simp only [Set.mem_Union, Set.mem_union],
|
|
|
-- split,
|
|
|
-- { simp only [forall_exists_index],
|
|
|
-- intro i,
|
|
|
-- fin_cases i; simp {contextual := tt}, },
|
|
|
-- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, },
|
|
|
-- end
|
|
|
-- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin
|
|
|
-- intros disjoint_f_g h hfh,
|
|
|
-- let support_f := support α f,
|
|
|
-- -- h is not the identity on support α f
|
|
|
-- cases Set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx,
|
|
|
-- let x_in_support_f := hx.1,
|
|
|
-- let hx_ne_x := mem_support.mp hx.2,
|
|
|
-- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V
|
|
|
-- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩,
|
|
|
-- let ristV_ne_bot := locally_moving V open_V (Set.nonempty_of_mem x_in_V),
|
|
|
-- -- let f₂ be a nontrivial element of rigid_stabilizer G V
|
|
|
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩,
|
|
|
-- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W
|
|
|
-- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩,
|
|
|
-- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved),
|
|
|
-- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩,
|
|
|
-- -- let f₁ be a nontrivial element of rigid_stabilizer G W
|
|
|
-- let ristW_ne_bot := locally_moving W open_W (Set.nonempty_of_mem y_in_W),
|
|
|
-- rcases (or_iff_right ristW_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩,
|
|
|
-- use f₁, use f₂,
|
|
|
-- -- note that f₁,f₂ commute with g since their support is in support α f
|
|
|
-- split,
|
|
|
-- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (Set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g),
|
|
|
-- split,
|
|
|
-- exact disjoint_commute (Set.disjoint_of_subset_left (Set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g),
|
|
|
-- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g
|
|
|
-- let k := ⁅f₂,h⁆,
|
|
|
-- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V
|
|
|
-- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W,
|
|
|
-- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm,
|
|
|
-- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W ∪ f₂ W ⊆ V ⊆ support f, so commutes with g.
|
|
|
-- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin
|
|
|
-- let := (support_comm α k f₁).trans (Set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)),
|
|
|
-- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this,
|
|
|
-- exact (this.trans $ (Set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support
|
|
|
-- end,
|
|
|
-- split,
|
|
|
-- exact disjoint_commute (Set.disjoint_of_subset_left h3 disjoint_f_g),
|
|
|
-- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
|
|
|
-- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z :=
|
|
|
-- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W),
|
|
|
-- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩,
|
|
|
-- by_contra h5,
|
|
|
-- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)),
|
|
|
-- end
|
|
|
-- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U :=
|
|
|
-- (mul_smul'' g h U).symm
|
|
|
-- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin
|
|
|
-- intro f_injective,
|
|
|
-- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin
|
|
|
-- by_contra,
|
|
|
-- let := smul_congr (f j) h,
|
|
|
-- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this,
|
|
|
-- from i_ne_j (f_injective this),
|
|
|
-- end in disjoint_nbhd x_moved,
|
|
|
-- let ι2 := { p : ι×ι // p.1 ≠ p.2 },
|
|
|
-- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some,
|
|
|
-- use U,
|
|
|
-- split,
|
|
|
-- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1),
|
|
|
-- split,
|
|
|
-- exact Set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1),
|
|
|
-- intros i j i_ne_j,
|
|
|
-- let U_inc := Set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩,
|
|
|
-- let := (disjoint_smul'' (f j) (Set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm,
|
|
|
-- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this,
|
|
|
-- from this
|
|
|
-- end
|
|
|
-- lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℤ) • x) := begin
|
|
|
-- intros i j same_img,
|
|
|
-- by_contra i_ne_j,
|
|
|
-- let same_img' := congr_arg ((•) (g ^ (-(j : ℤ)))) same_img,
|
|
|
-- simp only [inv_smul_smul] at same_img',
|
|
|
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
|
|
|
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
|
|
|
-- let ij := |(i:ℤ) - (j:ℤ)|,
|
|
|
-- rw ← sub_eq_add_neg at same_img',
|
|
|
-- have xfixed : g^ij • x = x := begin
|
|
|
-- cases abs_cases ((i:ℤ) - (j:ℤ)),
|
|
|
-- { rw ← h.1 at same_img', exact same_img' },
|
|
|
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
|
|
|
-- end,
|
|
|
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
|
|
|
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
|
|
|
-- rw zero_sub at neg_le,
|
|
|
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
|
|
|
-- rw sub_zero at le_pos,
|
|
|
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
|
|
|
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
|
|
|
-- end
|
|
|
-- lemma int_to_nat (k : ℤ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
|
|
|
-- cases (int.nat_abs_eq k),
|
|
|
-- { exact h },
|
|
|
-- { have : -(k.nat_abs : ℤ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
|
|
|
-- rw ← h at this, by_contra, linarith }
|
|
|
-- end
|
|
|
-- lemma moves_inj_N {g : G} {x : α} {n : ℕ} (period_ge_n' : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ℕ) • x) := begin
|
|
|
-- have period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x,
|
|
|
-- { intros k one_le_k k_lt_n,
|
|
|
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
|
|
|
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
|
|
|
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
|
|
|
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
|
|
|
-- exact this },
|
|
|
-- have := moves_inj period_ge_n,
|
|
|
-- done
|
|
|
-- end
|
|
|
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:ℤ) • x) := begin
|
|
|
-- apply moves_inj,
|
|
|
-- intros k k_ge_1 k_lt_5,
|
|
|
-- by_contra xfixed,
|
|
|
-- have k_div_12 : k * (12 / k) = 12 := begin
|
|
|
-- interval_cases using k_ge_1 k_lt_5; norm_num
|
|
|
-- end,
|
|
|
-- have veryfixed : g^12 • x = x := begin
|
|
|
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
|
|
|
-- rw [← zpow_mul,k_div_12] at this,
|
|
|
-- norm_cast at this
|
|
|
-- end,
|
|
|
-- exact xmoves veryfixed
|
|
|
-- end
|
|
|
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
|
|
|
-- intros locally_moving alg_disjoint,
|
|
|
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
|
|
|
-- by_contra not_disjoint,
|
|
|
-- let U := support α f ∩ support α (g^12),
|
|
|
-- have U_nonempty : U.nonempty := Set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
|
|
|
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
|
|
|
-- let x := U_nonempty.some,
|
|
|
-- have five_points : function.injective (λi : fin 5, g^(i:ℤ) • x) := moves_1234_of_moves_12 (mem_support.mp $ (Set.inter_subset_right _ _) U_nonempty.some_mem),
|
|
|
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((Set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
|
|
|
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
|
|
|
-- simp only at disjoint_img_V₁,
|
|
|
-- let V := V₀ ∩ V₁,
|
|
|
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
|
|
|
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (Set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
|
|
|
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
|
|
|
-- have comm_non_trivial : ¬commute f h := begin
|
|
|
-- by_contra comm_trivial,
|
|
|
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
|
|
|
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (Set.disjoint_of_subset (Set.inter_subset_left V₀ V₁) (smul''_subset f (Set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
|
|
|
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
|
|
|
-- exact z_moved act_comm.symm,
|
|
|
-- end,
|
|
|
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
|
|
|
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
|
|
|
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
|
|
|
-- -- now observe that supp([f₂, h]) ⊆ V ∪ f₂(V), and by the same reasoning supp(h')⊆V∪f₁(V)∪f₂(V)∪f₁f₂(V)
|
|
|
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V ∪ (f₂ •'' V) := (support_comm α f₂ h).trans (Set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
|
|
|
-- have support_h' : support α h' ⊆ ⋃(i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
|
|
|
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (Set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
|
|
|
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
|
|
|
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
|
|
|
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
|
|
|
-- exact rw_u.symm ▸ this,
|
|
|
-- end,
|
|
|
-- -- since h' is nontrivial, it has at least one point p in its support
|
|
|
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
|
|
|
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
|
|
|
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
|
|
|
-- intro i,
|
|
|
-- rw mem_support,
|
|
|
-- by_contra p_fixed,
|
|
|
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
|
|
|
-- exact p_moves p_fixed,
|
|
|
-- end,
|
|
|
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
|
|
|
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
|
|
|
-- let choice := λi : fin 5, (Set.mem_Union.mp $ support_h' $ gi_in_support i).some,
|
|
|
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
|
|
|
-- clear h_1_w h_1_h_h_w pigeonhole,
|
|
|
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
|
|
|
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
|
|
|
-- rw ← same_choice },
|
|
|
-- have g_i : g^i.val • p ∈ k •'' V := (Set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
|
|
|
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (Set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
|
|
|
-- -- but since g^(j−i)(V) is disjoint from V and k commutes with g, we know that g^(j−i)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
|
|
|
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
|
|
|
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ℤ))) (disjoint_img_V₁ i j i_ne_j)).symm,
|
|
|
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
|
|
|
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
|
|
|
-- from Set.disjoint_of_subset (smul''_subset _ (Set.inter_subset_right V₀ V₁)) (smul''_subset _ (Set.inter_subset_right V₀ V₁)) this
|
|
|
-- end,
|
|
|
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
|
|
|
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
|
|
|
-- let this := disjoint_smul'' k g_disjoint,
|
|
|
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
|
|
|
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
|
|
|
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
|
|
|
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
|
|
|
-- from this
|
|
|
-- end,
|
|
|
-- exact Set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
|
|
|
-- end
|
|
|
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
|
|
|
-- intro alg_disjoint,
|
|
|
-- by_contra non_commute,
|
|
|
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
|
|
|
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
|
|
|
-- tauto
|
|
|
-- end
|
|
|
-- section remark_1_3
|
|
|
-- def G := equiv.perm (fin 2)
|
|
|
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
|
|
|
-- example : is_algebraically_disjoint σ σ := begin
|
|
|
-- intro h,
|
|
|
-- fin_cases h,
|
|
|
-- intro hyp1,
|
|
|
-- exfalso,
|
|
|
-- swap, intro hyp2, exfalso,
|
|
|
-- -- is commute decidable? cc,
|
|
|
-- sorry -- dec_trivial
|
|
|
-- sorry -- second sorry needed
|
|
|
-- end
|
|
|
-- end remark_1_3
|
|
|
end AlgebraicDisjointness
|
|
|
|
|
|
----------------------------------------------------------------
|
|
|
section Rubin.RegularSupport.RegularSupport
|
|
|
|
|
|
variable [TopologicalSpace α] [Rubin.Topological.ContinuousMulAction G α]
|
|
|
|
|
|
def RegularSupport.InteriorClosure (U : Set α) :=
|
|
|
interior (closure U)
|
|
|
#align interior_closure Rubin.RegularSupport.InteriorClosure
|
|
|
|
|
|
theorem RegularSupport.is_open_interiorClosure (U : Set α) :
|
|
|
IsOpen (Rubin.RegularSupport.InteriorClosure U) :=
|
|
|
isOpen_interior
|
|
|
#align is_open_interior_closure Rubin.RegularSupport.is_open_interiorClosure
|
|
|
|
|
|
theorem RegularSupport.interiorClosure_mono {U V : Set α} :
|
|
|
U ⊆ V → Rubin.RegularSupport.InteriorClosure U ⊆ Rubin.RegularSupport.InteriorClosure V :=
|
|
|
interior_mono ∘ closure_mono
|
|
|
#align interior_closure_mono Rubin.RegularSupport.interiorClosure_mono
|
|
|
|
|
|
def is_regular_open (U : Set α) :=
|
|
|
Rubin.RegularSupport.InteriorClosure U = U
|
|
|
#align set.is_regular_open Rubin.is_regular_open
|
|
|
|
|
|
theorem is_regular_def (U : Set α) :
|
|
|
is_regular_open U ↔ Rubin.RegularSupport.InteriorClosure U = U := by rfl
|
|
|
#align set.is_regular_def Rubin.is_regular_def
|
|
|
|
|
|
theorem RegularSupport.IsOpen.in_closure {U : Set α} : IsOpen U → U ⊆ interior (closure U) :=
|
|
|
by
|
|
|
intro U_open x x_in_U
|
|
|
apply interior_mono subset_closure
|
|
|
rw [U_open.interior_eq]
|
|
|
exact x_in_U
|
|
|
#align is_open.in_closure Rubin.RegularSupport.IsOpen.in_closure
|
|
|
|
|
|
theorem RegularSupport.IsOpen.interiorClosure_subset {U : Set α} :
|
|
|
IsOpen U → U ⊆ Rubin.RegularSupport.InteriorClosure U := fun h =>
|
|
|
(subset_interior_iff_isOpen.mpr h).trans (interior_mono subset_closure)
|
|
|
#align is_open.interior_closure_subset Rubin.RegularSupport.IsOpen.interiorClosure_subset
|
|
|
|
|
|
theorem RegularSupport.regular_interior_closure (U : Set α) :
|
|
|
is_regular_open (Rubin.RegularSupport.InteriorClosure U) :=
|
|
|
by
|
|
|
rw [is_regular_def]
|
|
|
apply Set.Subset.antisymm
|
|
|
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure))
|
|
|
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
|
|
|
#align regular_interior_closure Rubin.RegularSupport.regular_interior_closure
|
|
|
|
|
|
def RegularSupport.RegularSupport (α : Type _) [TopologicalSpace α] [MulAction G α] (g : G) :=
|
|
|
Rubin.RegularSupport.InteriorClosure (Rubin.SmulSupport.Support α g)
|
|
|
#align regular_support Rubin.RegularSupport.RegularSupport
|
|
|
|
|
|
theorem RegularSupport.regularSupport_regular {g : G} :
|
|
|
is_regular_open (Rubin.RegularSupport.RegularSupport α g) :=
|
|
|
Rubin.RegularSupport.regular_interior_closure _
|
|
|
#align regular_regular_support Rubin.RegularSupport.regularSupport_regular
|
|
|
|
|
|
theorem RegularSupport.support_subset_regularSupport [T2Space α] (g : G) :
|
|
|
Rubin.SmulSupport.Support α g ⊆ Rubin.RegularSupport.RegularSupport α g :=
|
|
|
Rubin.RegularSupport.IsOpen.interiorClosure_subset (Rubin.Topological.support_open g)
|
|
|
#align support_in_regular_support Rubin.RegularSupport.support_subset_regularSupport
|
|
|
|
|
|
theorem RegularSupport.mem_regularSupport (g : G) (U : Set α) :
|
|
|
is_regular_open U → g ∈ rigidStabilizer G U → Rubin.RegularSupport.RegularSupport α g ⊆ U :=
|
|
|
fun U_ro g_moves =>
|
|
|
(is_regular_def _).mp U_ro ▸
|
|
|
Rubin.RegularSupport.interiorClosure_mono (rist_supported_in_set g_moves)
|
|
|
#align mem_regular_support Rubin.RegularSupport.mem_regularSupport
|
|
|
|
|
|
-- FIXME: Weird naming?
|
|
|
def RegularSupport.AlgebraicCentralizer (f : G) : Set G :=
|
|
|
{h | ∃ g, h = g ^ 12 ∧ Rubin.is_algebraically_disjoint f g}
|
|
|
#align algebraic_centralizer Rubin.RegularSupport.AlgebraicCentralizer
|
|
|
|
|
|
end Rubin.RegularSupport.RegularSupport
|
|
|
|
|
|
-- ----------------------------------------------------------------
|
|
|
-- section finite_exponent
|
|
|
-- lemma coe_nat_fin {n i : ℕ} (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩
|
|
|
-- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α]
|
|
|
-- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : ℕ}
|
|
|
-- (n_pos : 0 < n)
|
|
|
-- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ℕ) •'' V) (g ^ (j : ℕ) •'' V)) :
|
|
|
-- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V :=
|
|
|
-- begin
|
|
|
-- intros q hq i i_pos hcontra,
|
|
|
-- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, done },
|
|
|
-- have hcontra' : g ^ (i : ℕ) • (q : α) ∈ g ^ (i : ℕ) •'' V, exact ⟨ q, hq, rfl ⟩,
|
|
|
-- have giq_notin_V := Set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra',
|
|
|
-- exact ((by done : g ^ 0•''V = V) ▸ giq_notin_V) hcontra
|
|
|
-- end
|
|
|
-- lemma moves_inj_period {g : G} {p : α} {n : ℕ} (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ℕ) • p) := begin
|
|
|
-- have period_ge_n : ∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • p ≠ p,
|
|
|
-- { intros k one_le_k k_lt_n gkp_eq_p,
|
|
|
-- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p,
|
|
|
-- rw period_eq_n at this,
|
|
|
-- linarith },
|
|
|
-- exact moves_inj_N period_ge_n
|
|
|
-- end
|
|
|
-- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α]
|
|
|
-- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) :
|
|
|
-- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 :=
|
|
|
-- begin
|
|
|
-- intro U_nonempty,
|
|
|
-- by_contra exp_ne_zero,
|
|
|
-- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩,
|
|
|
-- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩,
|
|
|
-- dsimp at disj',
|
|
|
-- let V := U ∩ V',
|
|
|
-- have V_ss_U : V ⊆ U := Set.inter_subset_left U V',
|
|
|
-- have V'_ss_V : V ⊆ V' := Set.inter_subset_right U V',
|
|
|
-- have V_open : is_open V := is_open.inter U_open V'_open,
|
|
|
-- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩,
|
|
|
-- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V),
|
|
|
-- { intros i j i_ne_j W W_ss_giV W_ss_gjV,
|
|
|
-- exact disj' i j i_ne_j
|
|
|
-- (Set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V))
|
|
|
-- (Set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) },
|
|
|
-- have ristV_ne_bot := locally_moving V V_open (Set.nonempty_of_mem p_in_V),
|
|
|
-- rcases (or_iff_right ristV_ne_bot).mp (Subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
|
|
|
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩,
|
|
|
-- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g),
|
|
|
-- have giq_notin_V : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V,
|
|
|
-- have giq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → g ^ (i : ℕ) • (q : α) ≠ (q : α),
|
|
|
-- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, },
|
|
|
-- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 },
|
|
|
-- -- We have (hg)^i q = g^i q for all 0 < i < n
|
|
|
-- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ℕ) < n → (h * g) ^ (i : ℕ) • q = (g : G) ^ (i : ℕ) • q,
|
|
|
-- { intros i, induction (i : ℕ) with i',
|
|
|
-- { intro, repeat {rw pow_zero} },
|
|
|
-- { intro succ_i'_lt_n,
|
|
|
-- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ],
|
|
|
-- have image_q_notin_V : g ^ i'.succ • q ∉ V,
|
|
|
-- { have i'succ_ne_zero := ne_zero.pos i'.succ,
|
|
|
-- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero },
|
|
|
-- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } },
|
|
|
-- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n
|
|
|
-- have hgiq_ne_q : ∀ (i : fin n), (i : ℕ) > 0 → (h * g) ^ (i : ℕ) • q ≠ q,
|
|
|
-- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) },
|
|
|
-- -- This even holds for i = n
|
|
|
-- have hgnq_ne_q : (h * g) ^ n • q ≠ q,
|
|
|
-- { -- Rewrite (hg)^n q = hg^n q
|
|
|
-- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred),
|
|
|
-- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩,
|
|
|
-- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n),
|
|
|
-- have : n = (i' : ℕ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm,
|
|
|
-- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this],
|
|
|
-- -- Now it follows from g^n q = q and h q ≠ q
|
|
|
-- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q,
|
|
|
-- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n,
|
|
|
-- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) },
|
|
|
-- -- Finally, we derive a contradiction
|
|
|
-- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U),
|
|
|
-- rw ← n_eq_Sup at period_pos_le_n,
|
|
|
-- cases (lt_or_eq_of_le period_pos_le_n.2),
|
|
|
-- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) },
|
|
|
-- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) }
|
|
|
-- end
|
|
|
-- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry
|
|
|
-- end finite_exponent
|
|
|
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
|
|
|
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
|
|
|
end Rubin
|
|
|
|
|
|
end Rubin
|