You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/SmulImage.lean

231 lines
7.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Data.Finset.Basic
import Mathlib.GroupTheory.Subgroup.Basic
import Mathlib.GroupTheory.GroupAction.Basic
import Rubin.MulActionExt
namespace Rubin
/--
The image of a group action (here generalized to any pair `(G, α)` implementing `SMul`)
is the image of the elements of `U` under the `g • u` operation.
An alternative definition (which is available through the [`mem_smulImage`] theorem and the [`smulImage_set`] equality) would be:
`SmulImage g U = {x | g⁻¹ • x ∈ U}`.
The notation used for this operator is `g •'' U`.
-/
def SmulImage {G α : Type _} [SMul G α] (g : G) (U : Set α) :=
(g • ·) '' U
#align subset_img Rubin.SmulImage
infixl:60 " •'' " => Rubin.SmulImage
/--
The pre-image of a group action (here generalized to any pair `(G, α)` implementing `SMul`)
is the set of values `x: α` such that `g • x ∈ U`.
Unlike [`SmulImage`], no notation is defined for this operator.
--/
def SmulPreImage {G α : Type _} [SMul G α] (g : G) (U : Set α) :=
{x | g • x ∈ U}
#align subset_preimg' Rubin.SmulPreImage
variable {G α : Type _}
variable [Group G]
variable [MulAction G α]
theorem smulImage_def {g : G} {U : Set α} : g •'' U = (· • ·) g '' U :=
rfl
#align subset_img_def Rubin.smulImage_def
theorem mem_smulImage {x : α} {g : G} {U : Set α} : x ∈ g •'' U ↔ g⁻¹ • x ∈ U :=
by
rw [Rubin.smulImage_def, Set.mem_image (g • ·) U x]
constructor
· rintro ⟨y, yU, gyx⟩
let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ Rubin.smul_congr g⁻¹ gyx
exact ygx ▸ yU
· intro h
exact ⟨g⁻¹ • x, ⟨Set.mem_preimage.mp h, smul_inv_smul g x⟩⟩
#align mem_smul'' Rubin.mem_smulImage
-- Provides a way to express a [`SmulImage`] as a `Set`;
-- this is simply [`mem_smulImage`] paired with set extensionality.
theorem smulImage_set {g: G} {U: Set α} : g •'' U = {x | g⁻¹ • x ∈ U} := Set.ext (fun _x => mem_smulImage)
theorem mem_inv_smulImage {x : α} {g : G} {U : Set α} : x ∈ g⁻¹ •'' U ↔ g • x ∈ U :=
by
let msi := @Rubin.mem_smulImage _ _ _ _ x g⁻¹ U
rw [inv_inv] at msi
exact msi
#align mem_inv_smul'' Rubin.mem_inv_smulImage
theorem mem_smulImage' {x : α} (g : G) {U : Set α} : x ∈ U ↔ g • x ∈ g •'' U :=
by
rw [mem_smulImage]
rw [<-mul_smul, mul_left_inv, one_smul]
@[simp]
theorem smulImage_mul (g h : G) (U : Set α) : g •'' (h •'' U) = (g * h) •'' U :=
by
ext
rw [Rubin.mem_smulImage, Rubin.mem_smulImage, Rubin.mem_smulImage, ←
mul_smul, mul_inv_rev]
#align mul_smul'' Rubin.smulImage_mul
@[simp]
theorem one_smulImage (U : Set α) : (1 : G) •'' U = U :=
by
ext
rw [Rubin.mem_smulImage, inv_one, one_smul]
#align one_smul'' Rubin.one_smulImage
theorem smulImage_disjoint (g : G) {U V : Set α} :
Disjoint U V → Disjoint (g •'' U) (g •'' V) :=
by
intro disjoint_U_V
rw [Set.disjoint_left]
rw [Set.disjoint_left] at disjoint_U_V
intro x x_in_gU
by_contra h
exact (disjoint_U_V (mem_smulImage.mp x_in_gU)) (mem_smulImage.mp h)
#align disjoint_smul'' Rubin.smulImage_disjoint
theorem SmulImage.congr (g : G) {U V : Set α} : U = V → g •'' U = g •'' V :=
congr_arg fun W : Set α => g •'' W
#align smul''_congr Rubin.SmulImage.congr
theorem SmulImage.inv_congr (g: G) {U V : Set α} : g •'' U = g •'' V → U = V :=
by
intro h
rw [<-one_smulImage (G := G) U]
rw [<-one_smulImage (G := G) V]
rw [<-mul_left_inv g]
repeat rw [<-smulImage_mul]
exact SmulImage.congr g⁻¹ h
theorem smulImage_inv {g: G} {U V : Set α} (img_eq : g •'' U = g •'' V) : U = V :=
SmulImage.inv_congr g img_eq
theorem smulImage_subset (g : G) {U V : Set α} : U ⊆ V → g •'' U ⊆ g •'' V :=
by
intro h1 x
rw [Rubin.mem_smulImage, Rubin.mem_smulImage]
exact fun h2 => h1 h2
#align smul''_subset Rubin.smulImage_subset
theorem smulImage_union (g : G) {U V : Set α} : g •'' U V = (g •'' U) (g •'' V) :=
by
ext
rw [Rubin.mem_smulImage, Set.mem_union, Set.mem_union, Rubin.mem_smulImage,
Rubin.mem_smulImage]
#align smul''_union Rubin.smulImage_union
theorem smulImage_inter (g : G) {U V : Set α} : g •'' U ∩ V = (g •'' U) ∩ (g •'' V) :=
by
ext
rw [Set.mem_inter_iff, Rubin.mem_smulImage, Rubin.mem_smulImage,
Rubin.mem_smulImage, Set.mem_inter_iff]
#align smul''_inter Rubin.smulImage_inter
theorem smulImage_eq_inv_preimage {g : G} {U : Set α} : g •'' U = (g⁻¹ • ·) ⁻¹' U :=
by
ext
constructor
· intro h; rw [Set.mem_preimage]; exact mem_smulImage.mp h
· intro h; rw [Rubin.mem_smulImage]; exact Set.mem_preimage.mp h
#align smul''_eq_inv_preimage Rubin.smulImage_eq_inv_preimage
theorem smulImage_eq_of_smul_eq {g h : G} {U : Set α} :
(∀ x ∈ U, g • x = h • x) → g •'' U = h •'' U :=
by
intro hU
ext x
rw [Rubin.mem_smulImage, Rubin.mem_smulImage]
constructor
· intro k; let a := congr_arg (h⁻¹ • ·) (hU (g⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a k
· intro k; let a := congr_arg (g⁻¹ • ·) (hU (h⁻¹ • x) k);
simp only [smul_inv_smul, inv_smul_smul] at a ; exact Set.mem_of_eq_of_mem a.symm k
#align smul''_eq_of_smul_eq Rubin.smulImage_eq_of_smul_eq
theorem smulImage_subset_inv {G α : Type _} [Group G] [MulAction G α]
(f : G) (U V : Set α) :
f •'' U ⊆ V ↔ U ⊆ f⁻¹ •'' V :=
by
constructor
· intro h
apply smulImage_subset f⁻¹ at h
rw [smulImage_mul] at h
rw [mul_left_inv, one_smulImage] at h
exact h
· intro h
apply smulImage_subset f at h
rw [smulImage_mul] at h
rw [mul_right_inv, one_smulImage] at h
exact h
theorem smulImage_subset_inv' {G α : Type _} [Group G] [MulAction G α]
(f : G) (U V : Set α) :
f⁻¹ •'' U ⊆ V ↔ U ⊆ f •'' V :=
by
nth_rewrite 2 [<-inv_inv f]
exact smulImage_subset_inv f⁻¹ U V
theorem smulImage_disjoint_mul {G α : Type _} [Group G] [MulAction G α]
(f g : G) (U V : Set α) :
Disjoint (f •'' U) (g •'' V) ↔ Disjoint U ((f⁻¹ * g) •'' V) := by
constructor
· intro h
apply smulImage_disjoint f⁻¹ at h
repeat rw [smulImage_mul] at h
rw [mul_left_inv, one_smulImage] at h
exact h
· intro h
apply smulImage_disjoint f at h
rw [smulImage_mul] at h
rw [<-mul_assoc] at h
rw [mul_right_inv, one_mul] at h
exact h
theorem smulImage_disjoint_inv_pow {G α : Type _} [Group G] [MulAction G α]
(g : G) (i j : ) (U V : Set α) :
Disjoint (g^i •'' U) (g^j •'' V) ↔ Disjoint (g^(-j) •'' U) (g^(-i) •'' V) :=
by
rw [smulImage_disjoint_mul]
rw [<-zpow_neg, <-zpow_add, add_comm, zpow_add, zpow_neg]
rw [<-inv_inv (g^j)]
rw [<-smulImage_disjoint_mul]
simp
theorem smulImage_disjoint_subset {G α : Type _} [Group G] [MulAction G α]
{f g : G} {U V : Set α} (h_sub: U ⊆ V):
Disjoint (f •'' V) (g •'' V) → Disjoint (f •'' U) (g •'' U) :=
by
apply Set.disjoint_of_subset (smulImage_subset _ h_sub) (smulImage_subset _ h_sub)
-- States that if `g^i •'' V` and `g^j •'' V` are disjoint for any `i ≠ j` and `x ∈ V`
-- then `g^i • x` will always lie outside of `V`.
lemma smulImage_distinct_of_disjoint_pow {G α : Type _} [Group G] [MulAction G α] {g : G} {V : Set α} {n : }
(n_pos : 0 < n)
(h_disj : ∀ (i j : Fin n), i ≠ j → Disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
∀ (x : α) (_hx : x ∈ V) (i : Fin n), 0 < (i : ) → g ^ (i : ) • (x : α) ∉ V :=
by
intro x hx i i_pos
have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : Fin n) := by
intro h
rw [h] at i_pos
simp at i_pos
have h_contra : g ^ (i : ) • (x : α) ∈ g ^ (i : ) •'' V := by use x
have h_notin_V := Set.disjoint_left.mp (h_disj i (⟨0, n_pos⟩ : Fin n) i_ne_zero) h_contra
simp only [pow_zero, one_smulImage] at h_notin_V
exact h_notin_V
#align distinct_images_from_disjoint Rubin.smulImage_distinct_of_disjoint_pow
end Rubin