|
|
import Mathlib.GroupTheory.GroupAction.Basic
|
|
|
import Mathlib.GroupTheory.Subgroup.Basic
|
|
|
import Mathlib.GroupTheory.Subgroup.Actions
|
|
|
import Mathlib.GroupTheory.Commutator
|
|
|
import Mathlib.Topology.Basic
|
|
|
import Mathlib.Data.Fintype.Perm
|
|
|
import Mathlib.Tactic.FinCases
|
|
|
import Mathlib.Tactic.IntervalCases
|
|
|
|
|
|
import Rubin.RigidStabilizer
|
|
|
import Rubin.SmulImage
|
|
|
import Rubin.Topology
|
|
|
import Rubin.FaithfulAction
|
|
|
import Rubin.Period
|
|
|
import Rubin.LocallyDense
|
|
|
|
|
|
namespace Rubin
|
|
|
|
|
|
structure AlgebraicallyDisjointElem {G : Type _} [Group G] (f g h : G) :=
|
|
|
non_commute: ¬Commute f h
|
|
|
fst : G
|
|
|
snd : G
|
|
|
fst_commute : Commute fst g
|
|
|
snd_commute : Commute snd g
|
|
|
comm_elem_commute : Commute ⁅fst, ⁅snd, h⁆⁆ g
|
|
|
comm_elem_nontrivial : ⁅fst, ⁅snd, h⁆⁆ ≠ 1
|
|
|
|
|
|
namespace AlgebraicallyDisjointElem
|
|
|
|
|
|
def comm_elem {G : Type _} [Group G] {f g h : G} (disj_elem : AlgebraicallyDisjointElem f g h) : G :=
|
|
|
⁅disj_elem.fst, ⁅disj_elem.snd, h⁆⁆
|
|
|
|
|
|
@[simp]
|
|
|
theorem comm_elem_eq {G : Type _} [Group G] {f g h : G} (disj_elem : AlgebraicallyDisjointElem f g h) :
|
|
|
disj_elem.comm_elem = ⁅disj_elem.fst, ⁅disj_elem.snd, h⁆⁆ :=
|
|
|
by
|
|
|
unfold comm_elem
|
|
|
simp
|
|
|
|
|
|
end AlgebraicallyDisjointElem
|
|
|
|
|
|
-- Also known as `η_G(f)`.
|
|
|
|
|
|
/--
|
|
|
A pair (f, g) is said to be "algebraically disjoint" if it can produce an instance of
|
|
|
[`AlgebraicallyDisjointElem`] for any element `h ∈ G` such that `f` and `h` don't commute.
|
|
|
|
|
|
In other words, `g` is algebraically disjoint from `f` if `∀ h ∈ G`, with `⁅f, h⁆ ≠ 1`,
|
|
|
there exists a pair `f₁, f₂ ∈ Centralizer(g, G)`,
|
|
|
so that `⁅f₁, ⁅f₂, h⁆⁆` is a nontrivial element of `Centralizer(g, G)`.
|
|
|
|
|
|
Here the definition of `k ∈ Centralizer(g, G)` is directly unrolled as `Commute k g`.
|
|
|
|
|
|
This is a slightly weaker proposition than plain disjointness,
|
|
|
but it is easier to derive from the hypothesis of Rubin's theorem.
|
|
|
-/
|
|
|
def AlgebraicallyDisjoint {G : Type _} [Group G] (f g : G) :=
|
|
|
∀ (h : G), ¬Commute f h → AlgebraicallyDisjointElem f g h
|
|
|
|
|
|
theorem AlgebraicallyDisjoint_mk {G : Type _} [Group G] {f g : G}
|
|
|
(mk_thm : ∀ h : G, ¬Commute f h →
|
|
|
∃ f₁ f₂ : G, Commute f₁ g ∧ Commute f₂ g ∧ Commute ⁅f₁, ⁅f₂, h⁆⁆ g ∧ ⁅f₁, ⁅f₂, h⁆⁆ ≠ 1
|
|
|
) : AlgebraicallyDisjoint f g :=
|
|
|
fun (h : G) (nc : ¬Commute f h) => {
|
|
|
non_commute := nc,
|
|
|
fst := (mk_thm h nc).choose
|
|
|
snd := (mk_thm h nc).choose_spec.choose
|
|
|
fst_commute := (mk_thm h nc).choose_spec.choose_spec.left
|
|
|
snd_commute := (mk_thm h nc).choose_spec.choose_spec.right.left
|
|
|
comm_elem_commute := (mk_thm h nc).choose_spec.choose_spec.right.right.left
|
|
|
comm_elem_nontrivial := by
|
|
|
exact (mk_thm h nc).choose_spec.choose_spec.right.right.right
|
|
|
}
|
|
|
|
|
|
/--
|
|
|
This definition simply wraps `AlgebraicallyDisjoint` as a `Prop`.
|
|
|
It is equivalent to it, although since `AlgebraicallyDisjoint` isn't a `Prop`,
|
|
|
an `↔` (iff) statement joining the two cannot be written.
|
|
|
|
|
|
You should consider using it when proving `↔`/`∧` kinds of theorems, or when tools like `cases` are needed,
|
|
|
as the base `AlgebraicallyDisjoint` isn't a `Prop` and won't work with those.
|
|
|
|
|
|
The two `Coe` and `CoeFn` instances provided around this type make it essentially transparent —
|
|
|
you can use an instance of `AlgebraicallyDisjoint` in place of a `IsAlgebraicallyDisjoint` and vice-versa.
|
|
|
You might need to add the odd `↑` (coe) operator to make Lean happy.
|
|
|
--/
|
|
|
def IsAlgebraicallyDisjoint {G : Type _} [Group G] (f g : G): Prop :=
|
|
|
∀ (h : G), ¬Commute f h → ∃ (f₁ f₂ : G), ∃ (elem : AlgebraicallyDisjointElem f g h), elem.fst = f₁ ∧ elem.snd = f₂
|
|
|
|
|
|
namespace IsAlgebraicallyDisjoint
|
|
|
|
|
|
variable {G : Type _} [Group G]
|
|
|
variable {f g: G}
|
|
|
|
|
|
noncomputable def elim
|
|
|
(is_alg_disj: IsAlgebraicallyDisjoint f g) :
|
|
|
AlgebraicallyDisjoint f g :=
|
|
|
fun h nc => (is_alg_disj h nc).choose_spec.choose_spec.choose
|
|
|
|
|
|
def mk (alg_disj : AlgebraicallyDisjoint f g) : IsAlgebraicallyDisjoint f g :=
|
|
|
fun h nc =>
|
|
|
let elem := alg_disj h nc
|
|
|
⟨
|
|
|
elem.fst,
|
|
|
elem.snd,
|
|
|
elem,
|
|
|
rfl,
|
|
|
rfl
|
|
|
⟩
|
|
|
|
|
|
noncomputable instance coeFnAlgebraicallyDisjoint : CoeFun
|
|
|
(IsAlgebraicallyDisjoint f g)
|
|
|
(fun _ => AlgebraicallyDisjoint f g) where
|
|
|
coe := elim
|
|
|
|
|
|
instance coeAlgebraicallyDisjoint : Coe (AlgebraicallyDisjoint f g) (IsAlgebraicallyDisjoint f g) where
|
|
|
coe := mk
|
|
|
|
|
|
end IsAlgebraicallyDisjoint
|
|
|
|
|
|
-- TODO: find a better home for these lemmas
|
|
|
variable {G α : Type _}
|
|
|
variable [Group G]
|
|
|
variable [TopologicalSpace α]
|
|
|
variable [MulAction G α]
|
|
|
variable [ContinuousMulAction G α]
|
|
|
variable [FaithfulSMul G α]
|
|
|
|
|
|
-- Kind of a boring lemma but okay
|
|
|
lemma rewrite_Union (f : Fin 2 × Fin 2 → Set α) :
|
|
|
(⋃(i : Fin 2 × Fin 2), f i) = (f (0,0) ∪ f (0,1)) ∪ (f (1,0) ∪ f (1,1)) :=
|
|
|
by
|
|
|
ext x
|
|
|
simp only [Set.mem_iUnion, Set.mem_union]
|
|
|
constructor
|
|
|
· rewrite [forall_exists_index]
|
|
|
intro i
|
|
|
fin_cases i
|
|
|
<;> simp only [Fin.zero_eta, Fin.mk_one]
|
|
|
<;> intro h
|
|
|
<;> simp only [h, true_or, or_true]
|
|
|
· rintro ((h|h)|(h|h)) <;> exact ⟨_, h⟩
|
|
|
|
|
|
lemma smul_inj_moves {ι : Type*} [Fintype ι] [T2Space α]
|
|
|
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
|
|
|
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
|
|
|
((f j)⁻¹ * f i) • x ≠ x := by
|
|
|
by_contra h
|
|
|
apply i_ne_j
|
|
|
apply f_smul_inj
|
|
|
group_action
|
|
|
group at h
|
|
|
exact h
|
|
|
|
|
|
def smul_inj_nbhd {ι : Type*} [Fintype ι] [T2Space α]
|
|
|
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
|
|
|
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
|
|
|
Set α :=
|
|
|
(disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose
|
|
|
|
|
|
lemma smul_inj_nbhd_open {ι : Type*} [Fintype ι] [T2Space α]
|
|
|
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
|
|
|
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
|
|
|
IsOpen (smul_inj_nbhd i_ne_j f_smul_inj) :=
|
|
|
by
|
|
|
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.1
|
|
|
|
|
|
lemma smul_inj_nbhd_mem {ι : Type*} [Fintype ι] [T2Space α]
|
|
|
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
|
|
|
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
|
|
|
x ∈ (smul_inj_nbhd i_ne_j f_smul_inj) :=
|
|
|
by
|
|
|
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.1
|
|
|
|
|
|
lemma smul_inj_nbhd_disjoint {ι : Type*} [Fintype ι] [T2Space α]
|
|
|
{f : ι → G} {x : α} {i j : ι} (i_ne_j : i ≠ j)
|
|
|
(f_smul_inj : Function.Injective (fun i : ι => (f i) • x)) :
|
|
|
Disjoint
|
|
|
(smul_inj_nbhd i_ne_j f_smul_inj)
|
|
|
((f j)⁻¹ * f i •'' (smul_inj_nbhd i_ne_j f_smul_inj)) :=
|
|
|
by
|
|
|
exact (disjoint_nbhd (smul_inj_moves i_ne_j f_smul_inj)).choose_spec.2.2
|
|
|
|
|
|
|
|
|
lemma disjoint_nbhd_fin {ι : Type*} [Fintype ι] [T2Space α]
|
|
|
{f : ι → G} {x : α} (f_smul_inj : Function.Injective (fun i : ι => (f i) • x)):
|
|
|
∃ U : Set α,
|
|
|
IsOpen U ∧ x ∈ U ∧ (∀ (i j : ι), i ≠ j → Disjoint (f i •'' U) (f j •'' U)) :=
|
|
|
by
|
|
|
let ι₂ := { p : ι × ι | p.1 ≠ p.2 }
|
|
|
let U := ⋂(p : ι₂), smul_inj_nbhd p.prop f_smul_inj
|
|
|
use U
|
|
|
|
|
|
repeat' apply And.intro
|
|
|
· apply isOpen_iInter_of_finite
|
|
|
intro ⟨⟨i, j⟩, i_ne_j⟩
|
|
|
apply smul_inj_nbhd_open
|
|
|
· apply Set.mem_iInter.mpr
|
|
|
intro ⟨⟨i, j⟩, i_ne_j⟩
|
|
|
apply smul_inj_nbhd_mem
|
|
|
· intro i j i_ne_j
|
|
|
|
|
|
-- We transform `Disjoint (f i •'' U) (f j •'' U)` into `Disjoint N ((f i)⁻¹ * f j •'' N)`
|
|
|
let N := smul_inj_nbhd i_ne_j f_smul_inj
|
|
|
have U_subset_N : U ⊆ N := Set.iInter_subset
|
|
|
(fun (⟨⟨i, j⟩, i_ne_j⟩ : ι₂) => (smul_inj_nbhd i_ne_j f_smul_inj))
|
|
|
⟨⟨i, j⟩, i_ne_j⟩
|
|
|
|
|
|
rw [disjoint_comm, smulImage_disjoint_mul]
|
|
|
|
|
|
apply Set.disjoint_of_subset U_subset_N
|
|
|
· apply smulImage_mono
|
|
|
exact U_subset_N
|
|
|
· exact smul_inj_nbhd_disjoint i_ne_j f_smul_inj
|
|
|
|
|
|
lemma moves_inj {g : G} {x : α} {n : ℕ} (period_ge_n : ∀ (k : ℤ), 1 ≤ k → k < n → g^k • x ≠ x) :
|
|
|
Function.Injective (fun (i : Fin n) => g^(i : ℤ) • x) :=
|
|
|
by
|
|
|
intro a b same_img
|
|
|
by_contra a_ne_b
|
|
|
|
|
|
let abs_diff := |(a : ℤ) - (b : ℤ)|
|
|
|
|
|
|
apply period_ge_n abs_diff _ _ _
|
|
|
{
|
|
|
show 1 ≤ abs_diff
|
|
|
unfold_let
|
|
|
rw [<-zero_add 1, Int.add_one_le_iff]
|
|
|
apply abs_pos.mpr
|
|
|
apply sub_ne_zero.mpr
|
|
|
simp
|
|
|
apply Fin.vne_of_ne
|
|
|
apply a_ne_b
|
|
|
}
|
|
|
{
|
|
|
show abs_diff < (n : ℤ)
|
|
|
apply abs_lt.mpr
|
|
|
constructor
|
|
|
· rw [<-zero_sub]
|
|
|
apply Int.sub_lt_sub_of_le_of_lt <;> simp
|
|
|
· rw [<-sub_zero (n : ℤ)]
|
|
|
apply Int.sub_lt_sub_of_lt_of_le <;> simp
|
|
|
}
|
|
|
{
|
|
|
show g^abs_diff • x = x
|
|
|
|
|
|
simp at same_img
|
|
|
group_action at same_img
|
|
|
rw [neg_add_eq_sub] at same_img
|
|
|
|
|
|
cases abs_cases ((a : ℤ) - (b : ℤ)) with
|
|
|
| inl h =>
|
|
|
unfold_let
|
|
|
rw [h.1]
|
|
|
exact same_img
|
|
|
| inr h =>
|
|
|
unfold_let
|
|
|
rw [h.1]
|
|
|
rw [smul_eq_iff_eq_inv_smul]
|
|
|
group
|
|
|
symm
|
|
|
exact same_img
|
|
|
}
|
|
|
|
|
|
-- Note: this can be strengthened to `k ≥ 0`
|
|
|
lemma natAbs_eq_of_pos' (k : ℤ) (k_ge_one : k ≥ 1) : k = k.natAbs := by
|
|
|
cases Int.natAbs_eq k with
|
|
|
| inl _ => assumption
|
|
|
| inr h =>
|
|
|
exfalso
|
|
|
have k_lt_one : k < 1 := by
|
|
|
calc
|
|
|
k ≤ 0 := by
|
|
|
rw [h]
|
|
|
apply nonpos_of_neg_nonneg
|
|
|
rw [neg_neg]
|
|
|
apply Int.ofNat_nonneg
|
|
|
_ < 1 := by norm_num
|
|
|
exact ((lt_iff_not_ge _ _).mp k_lt_one) k_ge_one
|
|
|
|
|
|
lemma period_ge_n_cast {g : G} {x : α} {n : ℕ} :
|
|
|
(∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x) →
|
|
|
(∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x) :=
|
|
|
by
|
|
|
intro period_ge_n'
|
|
|
intro k one_le_k k_lt_n
|
|
|
|
|
|
have one_le_abs_k : 1 ≤ k.natAbs := by
|
|
|
rw [<-Nat.cast_le (α := ℤ)]
|
|
|
norm_num
|
|
|
calc
|
|
|
1 ≤ k := one_le_k
|
|
|
_ ≤ |k| := le_abs_self k
|
|
|
have abs_k_lt_n : k.natAbs < n := by
|
|
|
rw [<-Nat.cast_lt (α := ℤ)]
|
|
|
norm_num
|
|
|
calc
|
|
|
|k| = k := abs_of_pos one_le_k
|
|
|
_ < n := k_lt_n
|
|
|
have res := period_ge_n' k.natAbs one_le_abs_k abs_k_lt_n
|
|
|
|
|
|
rw [<-zpow_ofNat, Int.coe_natAbs, abs_of_pos _] at res
|
|
|
exact res
|
|
|
exact one_le_k
|
|
|
|
|
|
instance {g : G} {x : α} {n : ℕ} :
|
|
|
Coe
|
|
|
(∀ (k : ℕ), 1 ≤ k → k < n → g ^ k • x ≠ x)
|
|
|
(∀ (k : ℤ), 1 ≤ k → k < n → g ^ k • x ≠ x)
|
|
|
where
|
|
|
coe := period_ge_n_cast
|
|
|
|
|
|
-- TODO: remove the unneeded `n` parameter
|
|
|
theorem smul_injective_within_period {g : G} {p : α} {n : ℕ}
|
|
|
(period_eq_n : Period.period p g = n) :
|
|
|
Function.Injective (fun (i : Fin n) => g ^ (i : ℕ) • p) :=
|
|
|
by
|
|
|
have zpow_fix : (fun (i : Fin n) => g ^ (i : ℕ) • p) = (fun (i : Fin n) => g ^ (i : ℤ) • p) := by
|
|
|
ext x
|
|
|
simp
|
|
|
rw [zpow_fix]
|
|
|
apply moves_inj
|
|
|
intro k one_le_k k_lt_n
|
|
|
|
|
|
apply Period.moves_within_period'
|
|
|
exact one_le_k
|
|
|
rw [period_eq_n]
|
|
|
exact k_lt_n
|
|
|
#align moves_inj_period Rubin.smul_injective_within_period
|
|
|
|
|
|
|
|
|
/-
|
|
|
The algebraic centralizer (and its associated basis) allow for a purely group-theoretic construction of the
|
|
|
`RegularSupport` sets.
|
|
|
They are defined as the centralizers of the subgroups `{g^12 | g ∈ G ∧ AlgebraicallyDisjoint f g}`
|
|
|
-/
|
|
|
section AlgebraicCentralizer
|
|
|
|
|
|
variable {G : Type _}
|
|
|
variable [Group G]
|
|
|
|
|
|
-- TODO: prove this is a subgroup?
|
|
|
-- This is referred to as `ξ_G^12(f)`
|
|
|
def AlgebraicSubgroup (f : G) : Set G :=
|
|
|
(fun g : G => g^12) '' { g : G | IsAlgebraicallyDisjoint f g }
|
|
|
|
|
|
def AlgebraicCentralizer (f : G) : Subgroup G :=
|
|
|
Subgroup.centralizer (AlgebraicSubgroup f)
|
|
|
|
|
|
theorem AlgebraicSubgroup.conj (f g : G) :
|
|
|
(fun h => g * h * g⁻¹) '' AlgebraicSubgroup f = AlgebraicSubgroup (g * f * g⁻¹) :=
|
|
|
by
|
|
|
unfold AlgebraicSubgroup
|
|
|
rw [Set.image_image]
|
|
|
have gxg12_eq : ∀ x : G, g * x^12 * g⁻¹ = (g * x * g⁻¹)^12 := by
|
|
|
simp
|
|
|
simp only [gxg12_eq]
|
|
|
ext x
|
|
|
sorry
|
|
|
-- unfold IsAlgebraicallyDisjoint
|
|
|
|
|
|
|
|
|
@[simp]
|
|
|
theorem AlgebraicCentralizer.conj (f g : G) :
|
|
|
(fun h => g * h * g⁻¹) '' AlgebraicCentralizer f = AlgebraicCentralizer (g * f * g⁻¹) :=
|
|
|
by
|
|
|
unfold AlgebraicCentralizer
|
|
|
|
|
|
ext x
|
|
|
simp [Subgroup.mem_centralizer_iff]
|
|
|
|
|
|
constructor
|
|
|
· intro ⟨y, ⟨x_comm, x_eq⟩⟩
|
|
|
intro h h_in_alg
|
|
|
rw [<-AlgebraicSubgroup.conj] at h_in_alg
|
|
|
simp at h_in_alg
|
|
|
let ⟨i, i_in_alg, gig_eq_h⟩ := h_in_alg
|
|
|
specialize x_comm i i_in_alg
|
|
|
rw [<-gig_eq_h, <-x_eq]
|
|
|
group
|
|
|
rw [mul_assoc _ i, x_comm, <-mul_assoc]
|
|
|
· intro x_comm
|
|
|
use g⁻¹ * x * g
|
|
|
group
|
|
|
simp
|
|
|
intro h h_in_alg
|
|
|
simp [<-AlgebraicSubgroup.conj] at x_comm
|
|
|
specialize x_comm h h_in_alg
|
|
|
have h₁ : g⁻¹ * x * g * h = g⁻¹ * (g * h * g⁻¹ * x) * g := by
|
|
|
rw [x_comm]
|
|
|
group
|
|
|
rw [h₁]
|
|
|
group
|
|
|
|
|
|
/--
|
|
|
Finite intersections of [`AlgebraicCentralizer`].
|
|
|
--/
|
|
|
def AlgebraicCentralizerInter₀ (S : Finset G) : Subgroup G :=
|
|
|
⨅ (g ∈ S), AlgebraicCentralizer g
|
|
|
|
|
|
structure AlgebraicCentralizerBasis₀ (G: Type _) [Group G] where
|
|
|
seed : Finset G
|
|
|
val_ne_bot : AlgebraicCentralizerInter₀ seed ≠ ⊥
|
|
|
|
|
|
def AlgebraicCentralizerBasis₀.val (B : AlgebraicCentralizerBasis₀ G) : Subgroup G :=
|
|
|
AlgebraicCentralizerInter₀ B.seed
|
|
|
|
|
|
theorem AlgebraicCentralizerBasis₀.val_def (B : AlgebraicCentralizerBasis₀ G) :
|
|
|
B.val = AlgebraicCentralizerInter₀ B.seed := rfl
|
|
|
|
|
|
def AlgebraicCentralizerBasis (G : Type _) [Group G] : Set (Subgroup G) :=
|
|
|
{ H.val | H : AlgebraicCentralizerBasis₀ G }
|
|
|
|
|
|
theorem AlgebraicCentralizerBasis.mem_iff (H : Subgroup G) :
|
|
|
H ∈ AlgebraicCentralizerBasis G ↔ ∃ B : AlgebraicCentralizerBasis₀ G, B.val = H := by rfl
|
|
|
|
|
|
theorem AlgebraicCentralizerBasis.mem_iff' (H : Subgroup G)
|
|
|
(H_ne_bot : H ≠ ⊥) :
|
|
|
H ∈ AlgebraicCentralizerBasis G ↔ ∃ seed : Finset G, AlgebraicCentralizerInter₀ seed = H :=
|
|
|
by
|
|
|
rw [mem_iff]
|
|
|
constructor
|
|
|
· intro ⟨B, B_eq⟩
|
|
|
use B.seed
|
|
|
rw [AlgebraicCentralizerBasis₀.val_def] at B_eq
|
|
|
exact B_eq
|
|
|
· intro ⟨seed, seed_eq⟩
|
|
|
let B := AlgebraicCentralizerInter₀ seed
|
|
|
have val_ne_bot : B ≠ ⊥ := by
|
|
|
unfold_let
|
|
|
rw [seed_eq]
|
|
|
exact H_ne_bot
|
|
|
use ⟨seed, val_ne_bot⟩
|
|
|
rw [<-seed_eq]
|
|
|
rfl
|
|
|
|
|
|
end AlgebraicCentralizer
|
|
|
|
|
|
end Rubin
|