You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/Rubin/HomeoGroup.lean

375 lines
11 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import Mathlib.Logic.Equiv.Defs
import Mathlib.Topology.Basic
import Mathlib.Topology.Homeomorph
import Rubin.LocallyDense
import Rubin.Topology
import Rubin.Support
import Rubin.RegularSupport
structure HomeoGroup (α : Type _) [TopologicalSpace α] extends Homeomorph α α
variable {α : Type _}
variable [TopologicalSpace α]
def HomeoGroup.coe : HomeoGroup α -> Homeomorph α α := HomeoGroup.toHomeomorph
def HomeoGroup.from : Homeomorph α α -> HomeoGroup α := HomeoGroup.mk
instance homeoGroup_coe : Coe (HomeoGroup α) (Homeomorph α α) where
coe := HomeoGroup.coe
instance homeoGroup_coe₂ : Coe (Homeomorph α α) (HomeoGroup α) where
coe := HomeoGroup.from
def HomeoGroup.toPerm : HomeoGroup α → Equiv.Perm α := fun g => g.coe.toEquiv
instance homeoGroup_coe_perm : Coe (HomeoGroup α) (Equiv.Perm α) where
coe := HomeoGroup.toPerm
@[simp]
theorem HomeoGroup.toPerm_def (g : HomeoGroup α) : g.coe.toEquiv = (g : Equiv.Perm α) := rfl
@[simp]
theorem HomeoGroup.mk_coe (g : HomeoGroup α) : HomeoGroup.mk (g.coe) = g := rfl
@[simp]
theorem HomeoGroup.eq_iff_coe_eq {f g : HomeoGroup α} : f.coe = g.coe ↔ f = g := by
constructor
{
intro f_eq_g
rw [<-HomeoGroup.mk_coe f]
rw [f_eq_g]
simp
}
{
intro f_eq_g
unfold HomeoGroup.coe
rw [f_eq_g]
}
@[simp]
theorem HomeoGroup.from_toHomeomorph (m : Homeomorph α α) : (HomeoGroup.from m).toHomeomorph = m := rfl
instance homeoGroup_one : One (HomeoGroup α) where
one := HomeoGroup.from (Homeomorph.refl α)
theorem HomeoGroup.one_def : (1 : HomeoGroup α) = (Homeomorph.refl α : HomeoGroup α) := rfl
instance homeoGroup_inv : Inv (HomeoGroup α) where
inv := fun g => HomeoGroup.from (g.coe.symm)
@[simp]
theorem HomeoGroup.inv_def (g : HomeoGroup α) : (Homeomorph.symm g.coe : HomeoGroup α) = g⁻¹ := rfl
theorem HomeoGroup.coe_inv {g : HomeoGroup α} : HomeoGroup.coe (g⁻¹) = (HomeoGroup.coe g).symm := rfl
instance homeoGroup_mul : Mul (HomeoGroup α) where
mul := fun a b => ⟨b.toHomeomorph.trans a.toHomeomorph⟩
theorem HomeoGroup.coe_mul {f g : HomeoGroup α} : HomeoGroup.coe (f * g) = (HomeoGroup.coe g).trans (HomeoGroup.coe f) := rfl
@[simp]
theorem HomeoGroup.mul_def (f g : HomeoGroup α) : HomeoGroup.from ((HomeoGroup.coe g).trans (HomeoGroup.coe f)) = f * g := rfl
instance homeoGroup_group : Group (HomeoGroup α) where
mul_assoc := by
intro a b c
rw [<-HomeoGroup.eq_iff_coe_eq]
repeat rw [HomeoGroup_coe_mul]
rfl
mul_one := by
intro a
rw [<-HomeoGroup.eq_iff_coe_eq]
rw [HomeoGroup.coe_mul]
rfl
one_mul := by
intro a
rw [<-HomeoGroup.eq_iff_coe_eq]
rw [HomeoGroup.coe_mul]
rfl
mul_left_inv := by
intro a
rw [<-HomeoGroup.eq_iff_coe_eq]
rw [HomeoGroup.coe_mul]
rw [HomeoGroup.coe_inv]
simp
rfl
/--
The HomeoGroup trivially has a continuous and faithful `MulAction` on the underlying topology `α`.
--/
instance homeoGroup_smul₁ : SMul (HomeoGroup α) α where
smul := fun g x => g.toFun x
@[simp]
theorem HomeoGroup.smul₁_def (f : HomeoGroup α) (x : α) : f.toFun x = f • x := rfl
@[simp]
theorem HomeoGroup.smul₁_def' (f : HomeoGroup α) (x : α) : f.toHomeomorph x = f • x := rfl
@[simp]
theorem HomeoGroup.coe_toFun_eq_smul₁ (f : HomeoGroup α) (x : α) : FunLike.coe (HomeoGroup.coe f) x = f • x := rfl
instance homeoGroup_mulAction₁ : MulAction (HomeoGroup α) α where
one_smul := by
intro x
rfl
mul_smul := by
intro f g x
rfl
instance homeoGroup_mulAction₁_continuous : Rubin.ContinuousMulAction (HomeoGroup α) α where
continuous := by
intro h
constructor
intro S S_open
conv => {
congr; ext
congr; ext
rw [<-HomeoGroup.smul₁_def']
}
simp only [Homeomorph.isOpen_preimage]
exact S_open
instance homeoGroup_mulAction₁_faithful : FaithfulSMul (HomeoGroup α) α where
eq_of_smul_eq_smul := by
intro f g hyp
rw [<-HomeoGroup.eq_iff_coe_eq]
ext x
simp
exact hyp x
theorem HomeoGroup.smulImage_eq_image (g : HomeoGroup α) (S : Set α) :
g •'' S = ⇑g.toHomeomorph '' S := rfl
section ContinuousMulActionCoe
variable {G : Type _} [Group G]
variable [MulAction G α] [Rubin.ContinuousMulAction G α]
/--
`fromContinuous` is a structure-preserving transformation from a continuous `MulAction` to a `HomeoGroup`
--/
def HomeoGroup.fromContinuous (α : Type _) [TopologicalSpace α] [MulAction G α] [Rubin.ContinuousMulAction G α]
(g : G) : HomeoGroup α :=
HomeoGroup.from (Rubin.ContinuousMulAction.toHomeomorph α g)
@[simp]
theorem HomeoGroup.fromContinuous_def (g : G) :
HomeoGroup.from (Rubin.ContinuousMulAction.toHomeomorph α g) = HomeoGroup.fromContinuous α g := rfl
-- instance homeoGroup_coe_fromContinuous : Coe G (HomeoGroup α) where
-- coe := fun g => HomeoGroup.fromContinuous α g
@[simp]
theorem HomeoGroup.fromContinuous_smul (g : G) :
∀ x : α, (HomeoGroup.fromContinuous α g) • x = g • x :=
by
intro x
unfold fromContinuous
rw [<-HomeoGroup.smul₁_def', HomeoGroup.from_toHomeomorph]
unfold Rubin.ContinuousMulAction.toHomeomorph
simp
theorem HomeoGroup.fromContinuous_one :
HomeoGroup.fromContinuous α (1 : G) = (1 : HomeoGroup α) :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
simp
theorem HomeoGroup.fromContinuous_mul (g h : G):
(HomeoGroup.fromContinuous α g) * (HomeoGroup.fromContinuous α h) = (HomeoGroup.fromContinuous α (g * h)) :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [mul_smul]
simp
rw [mul_smul]
theorem HomeoGroup.fromContinuous_inv (g : G):
HomeoGroup.fromContinuous α g⁻¹ = (HomeoGroup.fromContinuous α g)⁻¹ :=
by
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
group_action
rw [mul_smul]
simp
theorem HomeoGroup.fromContinuous_eq_iff [FaithfulSMul G α] (g h : G):
(HomeoGroup.fromContinuous α g) = (HomeoGroup.fromContinuous α h) ↔ g = h :=
by
constructor
· intro cont_eq
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [<-HomeoGroup.fromContinuous_smul g]
rw [cont_eq]
simp
· tauto
@[simp]
theorem HomeoGroup.fromContinuous_support (g : G) :
Rubin.Support α (HomeoGroup.fromContinuous α g) = Rubin.Support α g :=
by
ext x
repeat rw [Rubin.mem_support]
rw [<-HomeoGroup.smul₁_def, <-HomeoGroup.fromContinuous_def]
rw [HomeoGroup.from_toHomeomorph]
rw [Rubin.ContinuousMulAction.toHomeomorph_toFun]
@[simp]
theorem HomeoGroup.fromContinuous_regularSupport (g : G) :
Rubin.RegularSupport α (HomeoGroup.fromContinuous α g) = Rubin.RegularSupport α g :=
by
unfold Rubin.RegularSupport
rw [HomeoGroup.fromContinuous_support]
@[simp]
theorem HomeoGroup.fromContinuous_smulImage (g : G) (V : Set α) :
(HomeoGroup.fromContinuous α g) •'' V = g •'' V :=
by
repeat rw [Rubin.smulImage_def]
simp
def HomeoGroup.fromContinuous_embedding (α : Type _) [TopologicalSpace α] [MulAction G α] [Rubin.ContinuousMulAction G α] [FaithfulSMul G α]: G ↪ (HomeoGroup α) where
toFun := fun (g : G) => HomeoGroup.fromContinuous α g
inj' := by
intro g h fromCont_eq
simp at fromCont_eq
apply FaithfulSMul.eq_of_smul_eq_smul (α := α)
intro x
rw [<-fromContinuous_smul, fromCont_eq, fromContinuous_smul]
@[simp]
theorem HomeoGroup.fromContinuous_embedding_toFun [FaithfulSMul G α] (g : G):
HomeoGroup.fromContinuous_embedding α g = HomeoGroup.fromContinuous α g := rfl
def HomeoGroup.fromContinuous_monoidHom (α : Type _) [TopologicalSpace α] [MulAction G α] [Rubin.ContinuousMulAction G α] [FaithfulSMul G α]: G →* (HomeoGroup α) where
toFun := fun (g : G) => HomeoGroup.fromContinuous α g
map_one' := by
simp
rw [fromContinuous_one]
map_mul' := by
simp
intros
rw [fromContinuous_mul]
-- theorem HomeoGroup.fromContinuous_rigidStabilizer (U : Set α) [FaithfulSMul G α]:
-- Rubin.RigidStabilizer (HomeoGroup α) U = Subgroup.map (HomeoGroup.fromContinuous_monoidHom α) (Rubin.RigidStabilizer G U) :=
-- by
-- ext g
-- rw [<-Subgroup.mem_carrier]
-- unfold Rubin.RigidStabilizer
-- simp
-- sorry
end ContinuousMulActionCoe
namespace Rubin
section Other
-- TODO: move this somewhere else
/--
## Proposition 3.1
--/
theorem rigidStabilizer_subset_iff (G : Type _) {α : Type _} [Group G] [TopologicalSpace α]
[MulAction G α] [ContinuousMulAction G α] [FaithfulSMul G α]
[h_lm : LocallyMoving G α]
{U V : Set α} (U_reg : Regular U) (V_reg : Regular V):
U ⊆ V ↔ RigidStabilizer G U ≤ RigidStabilizer G V :=
by
constructor
exact rigidStabilizer_mono
intro rist_ss
by_contra U_not_ss_V
let W := U \ closure V
have W_nonempty : Set.Nonempty W := by
by_contra W_empty
apply U_not_ss_V
apply subset_from_diff_closure_eq_empty
· assumption
· exact U_reg.isOpen
· rw [Set.not_nonempty_iff_eq_empty] at W_empty
exact W_empty
have W_ss_U : W ⊆ U := by
simp
exact Set.diff_subset _ _
have W_open : IsOpen W := by
unfold_let
rw [Set.diff_eq_compl_inter]
apply IsOpen.inter
simp
exact U_reg.isOpen
have ⟨f, f_in_ristW, f_ne_one⟩ := h_lm.get_nontrivial_rist_elem W_open W_nonempty
have f_in_ristU : f ∈ RigidStabilizer G U := by
exact rigidStabilizer_mono W_ss_U f_in_ristW
have f_notin_ristV : f ∉ RigidStabilizer G V := by
apply rigidStabilizer_compl f_ne_one
apply rigidStabilizer_mono _ f_in_ristW
calc
W = U ∩ (closure V)ᶜ := by unfold_let; rw [Set.diff_eq_compl_inter, Set.inter_comm]
_ ⊆ (closure V)ᶜ := Set.inter_subset_right _ _
_ ⊆ Vᶜ := by
rw [Set.compl_subset_compl]
exact subset_closure
exact f_notin_ristV (rist_ss f_in_ristU)
theorem rigidStabilizer_eq_iff (G : Type _) [Group G] {α : Type _} [TopologicalSpace α]
[MulAction G α] [ContinuousMulAction G α] [FaithfulSMul G α] [LocallyMoving G α]
{U V : Set α} (U_reg : Regular U) (V_reg : Regular V):
RigidStabilizer G U = RigidStabilizer G V ↔ U = V :=
by
constructor
· intro rist_eq
apply le_antisymm <;> simp only [Set.le_eq_subset]
all_goals {
rw [rigidStabilizer_subset_iff G] <;> try assumption
rewrite [rist_eq]
rfl
}
· intro H_eq
rw [H_eq]
theorem homeoGroup_rigidStabilizer_subset_iff {α : Type _} [TopologicalSpace α]
[h_lm : LocallyMoving (HomeoGroup α) α]
{U V : Set α} (U_reg : Regular U) (V_reg : Regular V):
U ⊆ V ↔ RigidStabilizer (HomeoGroup α) U ≤ RigidStabilizer (HomeoGroup α) V :=
by
rw [rigidStabilizer_subset_iff (HomeoGroup α) U_reg V_reg]
theorem homeoGroup_rigidStabilizer_eq_iff {α : Type _} [TopologicalSpace α]
[LocallyMoving (HomeoGroup α) α]
{U V : Set α} (U_reg : Regular U) (V_reg : Regular V):
RigidStabilizer (HomeoGroup α) U = RigidStabilizer (HomeoGroup α) V ↔ U = V :=
by
constructor
· intro rist_eq
apply le_antisymm <;> simp only [Set.le_eq_subset]
all_goals {
rw [homeoGroup_rigidStabilizer_subset_iff] <;> try assumption
rewrite [rist_eq]
rfl
}
· intro H_eq
rw [H_eq]
theorem homeoGroup_rigidStabilizer_injective {α : Type _} [TopologicalSpace α] [LocallyMoving (HomeoGroup α) α]
: Function.Injective (fun U : { S : Set α // Regular S } => RigidStabilizer (HomeoGroup α) U.val) :=
by
intro ⟨U, U_reg⟩
intro ⟨V, V_reg⟩
simp
exact (homeoGroup_rigidStabilizer_eq_iff U_reg V_reg).mp
end Other
end Rubin