You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rubin-lean4/old/rubin.lean

1055 lines
49 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/-
Copyright (c) 2023 Laurent Bartholdi. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Laurent Bartholdi
-/
import tactic
--import group_action_tactic.lean
import data.finset.basic
import data.finset.card
import data.fintype.perm
import group_theory.subgroup.basic
import group_theory.commutator
import group_theory.group_action.basic
import group_theory.exponent
import group_theory.perm.basic
import topology.basic
import topology.subset_properties
import topology.separation
import topology.homeomorph
--@[simp]
lemma smul_smul' {G α : Type*} [group G] [mul_action G α] {g h : G} {x : α} : g • h • x = (g*h) • x := (mul_smul g h x).symm
--@[simp]
lemma smul_eq_smul {G α : Type*} [group G] [mul_action G α] {g h : G} {x y : α} : g • x = h • y ↔ (h⁻¹*g) • x = y := begin
split,
{ intro hyp,
let := congr_arg ((•) h⁻¹) hyp,
rw [← mul_smul,← mul_smul,mul_left_inv,one_smul] at this,
from this },
{ intro hyp,
let := congr_arg ((•) h) hyp,
rw [← mul_smul,← mul_assoc,mul_right_inv,one_mul] at this,
from this }
end
lemma smul_succ {G α : Type*} (n : ) [group G] [mul_action G α] {g : G} {x : α} : g ^ n.succ • x = g • g ^ n • x := begin
have := tactic.ring.pow_add_rev g 1 n,
rw [pow_one, ← nat.succ_eq_one_add] at this,
rw [← this, smul_smul]
end
section group_action_tactic
namespace tactic.interactive
setup_tactic_parser
open tactic
setup_tactic_parser
open tactic.simp_arg_type interactive tactic.group
/-- Auxiliary tactic for the `group_action` tactic. Calls the simplifier only. -/
meta def aux_group_action (locat : loc) : tactic unit :=
tactic.interactive.simp_core { fail_if_unchanged := ff } skip tt [
expr ``(smul_smul'),
expr ``(smul_eq_smul),
expr ``(smul_succ),
expr ``(one_smul),
expr ``(commutator_element_def),
expr ``(mul_one),
expr ``(one_mul),
expr ``(one_pow),
expr ``(one_zpow),
expr ``(sub_self),
expr ``(add_neg_self),
expr ``(neg_add_self),
expr ``(neg_neg),
expr ``(tsub_self),
expr ``(int.coe_nat_add),
expr ``(int.coe_nat_mul),
expr ``(int.coe_nat_zero),
expr ``(int.coe_nat_one),
expr ``(int.coe_nat_bit0),
expr ``(int.coe_nat_bit1),
expr ``(int.mul_neg_eq_neg_mul_symm),
expr ``(int.neg_mul_eq_neg_mul_symm),
symm_expr ``(zpow_coe_nat),
symm_expr ``(zpow_neg_one),
symm_expr ``(zpow_mul),
symm_expr ``(zpow_add_one),
symm_expr ``(zpow_one_add),
symm_expr ``(zpow_add),
expr ``(mul_zpow_neg_one),
expr ``(zpow_zero),
expr ``(mul_zpow),
symm_expr ``(mul_assoc),
expr ``(zpow_trick),
expr ``(zpow_trick_one),
expr ``(zpow_trick_one'),
expr ``(zpow_trick_sub),
expr ``(mul_one),
expr ``(one_mul),
expr ``(one_pow),
expr ``(one_zpow),
expr ``(sub_self),
expr ``(add_neg_self),
expr ``(neg_add_self),
expr ``(neg_neg),
expr ``(tsub_self),
expr ``(int.coe_nat_add),
expr ``(int.coe_nat_mul),
expr ``(int.coe_nat_zero),
expr ``(int.coe_nat_one),
expr ``(int.coe_nat_bit0),
expr ``(int.coe_nat_bit1),
expr ``(int.mul_neg_eq_neg_mul_symm),
expr ``(int.neg_mul_eq_neg_mul_symm),
symm_expr ``(zpow_coe_nat),
symm_expr ``(zpow_neg_one),
symm_expr ``(zpow_mul),
symm_expr ``(zpow_add_one),
symm_expr ``(zpow_one_add),
symm_expr ``(zpow_add),
expr ``(mul_zpow_neg_one),
expr ``(zpow_zero),
expr ``(mul_zpow),
symm_expr ``(mul_assoc),
expr ``(zpow_trick),
expr ``(zpow_trick_one),
expr ``(zpow_trick_one'),
expr ``(zpow_trick_sub),
expr ``(tactic.ring.horner)]
[] locat >> skip
/--
Tactic for normalizing expressions in group actions, without assuming
commutativity, using only the group axioms without any information about
which group is manipulated.
Example:
```lean
example {G α : Type} [group G] [mul_action G α] (a b : G) (x y : α) (h : a • b • x = a • y) : b⁻¹ • y = x :=
begin
group_action at h, -- normalizes `h` which becomes `h : c = d`
rw ← h, -- the goal is now `a*d*d⁻¹ = a`
group_action -- which then normalized and closed
end
```
-/
meta def group_action (locat : parse location) : tactic unit :=
do aux_group_action locat,
repeat (aux_group₂ locat ; aux_group_action locat)
end tactic.interactive
add_tactic_doc
{ name := "group_action",
category := doc_category.tactic,
decl_names := [`tactic.interactive.group_action],
tags := ["decision procedure", "simplification"] }
end group_action_tactic
example (G α : Type*) [group G] (a b c : G) [mul_action G α] (x : α) : ⁅a*b,c⁆ • x = (a*⁅b,c⁆*a⁻¹*⁅a,c⁆) • x := begin
group_action,
end
lemma equiv.congr_ne {ι ι' : Type*} (e : ιι') {x y : ι} : x ≠ y → e x ≠ e y := begin
intro x_ne_y,
by_contra h,
apply x_ne_y,
convert congr_arg e.symm h;
simp only [equiv.symm_apply_apply]
end
-- this definitely should be added to mathlib!
@[simp, to_additive] lemma subgroup.mk_smul {G α : Type*} [group G] [mul_action G α]
{S : subgroup G} {g : G} (hg : g ∈ S) (a : α) : (⟨g, hg⟩ : S) • a = g • a := rfl
----------------------------------------------------------------
section rubin
variables {G α β : Type*} [group G]
----------------------------------------------------------------
section groups
lemma bracket_mul {f g : G} : ⁅f,g⁆ = f*g*f⁻¹*g⁻¹ := by tauto
def is_algebraically_disjoint (f g : G) := ∀h : G, ¬commute f h → ∃f₁ f₂ : G, commute f₁ g ∧ commute f₂ g ∧ commute ⁅f₁,⁅f₂,h⁆⁆ g ∧ ⁅f₁,⁅f₂,h⁆⁆≠1
end groups
----------------------------------------------------------------
section actions
variable [mul_action G α]
@[simp] lemma orbit_bot (G : Type*) [group G] [mul_action G α] (p : α) : mul_action.orbit (⊥ : subgroup G) p = {p} := begin
ext1,
rw mul_action.mem_orbit_iff,
split,
{ rintro ⟨⟨_,g_bot⟩,g_to_x⟩,
rw [← g_to_x,set.mem_singleton_iff,subgroup.mk_smul],
exact (subgroup.mem_bot.mp g_bot).symm ▸ (one_smul _ _) },
exact λ h, ⟨1,eq.trans (one_smul _ p) (set.mem_singleton_iff.mp h).symm⟩
end
--------------------------------
section smul''
lemma smul_congr (g : G) {x y : α} (h : x = y) : g • x = g • y := congr_arg ((•) g) h
lemma smul_eq_iff_inv_smul_eq {x : α} {g : G} : g • x = x ↔ g⁻¹ • x = x :=
⟨λ h, (smul_congr g⁻¹ h).symm.trans (inv_smul_smul g x),λ h, (smul_congr g h).symm.trans (smul_inv_smul g x)⟩
lemma smul_pow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g^n • x = x := begin
induction n,
simp only [pow_zero, one_smul, eq_self_iff_true, implies_true_iff],
{ intro h,
nth_rewrite 1 ← (smul_congr g (n_ih h)).trans h,
rw [← mul_smul,← pow_succ]
}
end
lemma smul_zpow_eq_of_smul_eq {x : α} {g : G} (n : ) : g • x = x → g^n • x = x := begin
intro h,
cases n,
{ let := smul_pow_eq_of_smul_eq n h, finish },
{ let := smul_eq_iff_inv_smul_eq.mp (smul_pow_eq_of_smul_eq (1+n) h), finish }
end
def is_equivariant (G : Type*) {β : Type*} [group G] [mul_action G α] [mul_action G β] (f : α → β) :=
∀g : G, ∀x : α, f (g • x) = g • (f x)
def subset_img' (g : G) (U : set α) := { x | g⁻¹ • x ∈ U }
def subset_preimg' (g : G) (U : set α) := { x | g • x ∈ U }
def subset_img (g : G) (U : set α) := (•) g '' U
infix `•''`:60 := subset_img
lemma subset_img_def {g : G} {U : set α} : g •'' U = ((•) g) '' U := rfl
lemma mem_smul'' {x : α} {g : G} {U : set α} : x ∈ g •'' U ↔ g⁻¹ • x ∈ U := begin
rw [subset_img_def,set.mem_image ((•) g) U x],
split,
{ rintro ⟨y,yU,gyx⟩,
let ygx : y = g⁻¹ • x := inv_smul_smul g y ▸ smul_congr g⁻¹ gyx,
exact ygx ▸ yU
},
{ intro h,
use ⟨g⁻¹ • x,set.mem_preimage.mp h,smul_inv_smul g x⟩,
}
end
lemma mem_inv_smul'' {x : α} {g : G} {U : set α} : x ∈ g⁻¹ •'' U ↔ g • x ∈ U := begin
let msi := @mem_smul'' _ _ _ _ x g⁻¹ U,
rw inv_inv at msi,
exact msi
end
lemma mul_smul'' (g h : G) (U : set α) : (g*h) •'' U = (g •'' (h •'' U)) := begin
ext,
rw [mem_smul'',mem_smul'',mem_smul'',← mul_smul,mul_inv_rev]
end
@[simp] lemma smul''_smul'' {g h : G} {U : set α} : (g •'' (h •'' U)) = (g*h) •'' U := (mul_smul'' g h U).symm
@[simp] lemma one_smul'' (U : set α) : (1:G) •'' U = U := begin
ext,
rw [mem_smul'',inv_one,one_smul]
end
lemma disjoint_smul'' (g : G) {U V : set α} : disjoint U V → disjoint (g •'' U) (g •'' V) := begin
intro disjoint_U_V,
rw set.disjoint_left,
rw set.disjoint_left at disjoint_U_V,
intros x x_in_gU,
by_contra h,
exact (disjoint_U_V (mem_smul''.mp x_in_gU)) (mem_smul''.mp h)
end
-- TODO: check if this is actually needed
lemma smul''_congr (g : G) {U V : set α} : U = V → g •'' U = g •'' V := congr_arg (λ(W : set α), g •'' W)
lemma smul''_subset (g : G) {U V : set α} : U ⊆ V → g •'' U ⊆ g •'' V := begin
intros h1 x,
rw [mem_smul'',mem_smul''],
exact λ h2, h1 h2
end
lemma smul''_union (g : G) {U V : set α} : g •'' (U V) = (g •'' U) (g •'' V) := begin
ext,
rw [mem_smul'',set.mem_union,set.mem_union,mem_smul'',mem_smul''],
end
lemma smul''_inter (g : G) {U V : set α} : g •'' (U ∩ V) = (g •'' U) ∩ (g •'' V) := begin
ext,
rw [set.mem_inter_iff,mem_smul'',mem_smul'',mem_smul'',set.mem_inter_iff]
end
lemma smul''_eq_inv_preimage {g : G} {U : set α} : g •'' U = (•) g⁻¹ ⁻¹' U :=
begin
ext,
split,
{ intro h, rw [set.mem_preimage], exact mem_smul''.mp h },
{ intro h, rw mem_smul'', exact set.mem_preimage.mp h }
end
lemma smul''_eq_of_smul_eq {g h : G} {U : set α} : (∀x ∈ U, g • x = h • x) → g •'' U = h •'' U := begin
intros hU,
ext,
rw [mem_smul'',mem_smul''],
split,
{ intro k, let a := congr_arg ((•) h⁻¹) (hU (g⁻¹ • x) k), simp only [smul_inv_smul,inv_smul_smul] at a, exact set.mem_of_eq_of_mem a k },
{ intro k, let a := congr_arg ((•) g⁻¹) (hU (h⁻¹ • x) k), simp only [smul_inv_smul,inv_smul_smul] at a, exact set.mem_of_eq_of_mem a.symm k }
end
end smul''
--------------------------------
section support
def support (α : Type*) [mul_action G α] (g : G) := { x : α | g • x ≠ x }
lemma support_eq_not_fixed_by {g : G} : support α g = (mul_action.fixed_by G α g)ᶜ := by tauto
lemma mem_support {x : α} {g : G} : x ∈ support α g ↔ g • x ≠ x := by tauto
lemma mem_not_support {x : α} {g : G} : x ∉ support α g ↔ g • x = x := by rw [mem_support,not_not]
lemma smul_in_support {g : G} {x : α} : x ∈ support α g → g • x ∈ support α g := λ h, h ∘ (smul_left_cancel g)
lemma inv_smul_in_support {g : G} {x : α} : x ∈ support α g → g⁻¹ • x ∈ support α g := λ h k, h (smul_inv_smul g x ▸ smul_congr g k)
lemma fixed_of_disjoint {g : G} {x : α} {U : set α} : x ∈ U → disjoint U (support α g) → g • x = x :=
λ x_in_U disjoint_U_support, mem_not_support.mp (set.disjoint_left.mp disjoint_U_support x_in_U)
lemma fixes_subset_within_support (g : G) {U : set α} : support α g ⊆ U → g •'' U = U := begin
intros support_in_U,
ext x,
cases @or_not (x ∈ support α g) with xmoved xfixed,
exact ⟨λ _, support_in_U xmoved,
λ _, mem_smul''.mpr (support_in_U (inv_smul_in_support xmoved))⟩,
rw [mem_smul'',smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp xfixed)]
end
lemma moves_subset_within_support (g : G) (U V : set α) : U ⊆ V → support α g ⊆ V → g •'' U ⊆ V :=
λ U_in_V support_in_V, fixes_subset_within_support g support_in_V ▸ smul''_subset g U_in_V
lemma support_mul (g h : G) (α : Type*) [mul_action G α] : support α (g*h) ⊆ support α g support α h := begin
intros x x_in_support,
by_contra h_support,
let := not_or_distrib.mp h_support,
from x_in_support ((mul_smul g h x).trans ((congr_arg ((•) g) (mem_not_support.mp this.2)).trans $ mem_not_support.mp this.1)),
end
lemma support_conjugate (α : Type*) [mul_action G α] (g h : G) : support α (h*g*h⁻¹) = h •'' (support α g) := begin
ext,
rw [mem_support,mem_smul'',mem_support,mul_smul,mul_smul],
split,
{ intro h1, by_contra h2, exact h1 ((congr_arg ((•) h) h2).trans (smul_inv_smul _ _)) },
{ intro h1, by_contra h2, exact h1 ((inv_smul_smul h (g • h⁻¹ • x)) ▸ (congr_arg ((•) h⁻¹) h2)) }
end
lemma support_inv (α : Type*) [mul_action G α] (g : G) : support α g⁻¹ = support α g := begin
ext,
rw [mem_support,mem_support],
split,
{ intro h1, by_contra h2, exact h1 (smul_eq_iff_inv_smul_eq.mp h2) },
{ intro h1, by_contra h2, exact h1 (smul_eq_iff_inv_smul_eq.mpr h2) }
end
lemma support_pow (α : Type*) [mul_action G α] (g : G) (j : ) : support α (g^j) ⊆ support α g := begin
intros x xmoved,
by_contra xfixed,
rw mem_support at xmoved,
induction j,
{ apply xmoved, rw [pow_zero g,one_smul] },
{ apply xmoved,
let j_ih := (congr_arg ((•) g) (not_not.mp j_ih)).trans (mem_not_support.mp xfixed),
rw [← mul_smul,← pow_succ] at j_ih,
exact j_ih
}
end
lemma support_comm (α : Type*) [mul_action G α] (g h : G) : support α ⁅g,h⁆ ⊆ support α h (g •'' (support α h)) := begin
intros x x_in_support,
by_contra all_fixed,
rw set.mem_union at all_fixed,
cases @or_not (h • x = x) with xfixed xmoved,
{ rw [mem_support,bracket_mul,mul_smul,smul_eq_iff_inv_smul_eq.mp xfixed,← mem_support] at x_in_support,
exact ((support_conjugate α h g).symm ▸ (not_or_distrib.mp all_fixed).2) x_in_support
},
{ exact all_fixed (or.inl xmoved) },
end
lemma disjoint_support_comm (f g : G) {U : set α} : support α f ⊆ U → disjoint U (g •'' U) → ∀x ∈ U, ⁅f,g⁆ • x = f • x := begin
intros support_in_U disjoint_U x x_in_U,
have support_conj : support α (g*f⁻¹*g⁻¹) ⊆ g •'' U := ((support_conjugate α f⁻¹ g).trans (smul''_congr g (support_inv α f))).symm ▸ (smul''_subset g support_in_U),
have goal := (congr_arg ((•) f) (fixed_of_disjoint x_in_U (set.disjoint_of_subset_right support_conj disjoint_U))).symm,
rw [← mul_smul,← mul_assoc,← mul_assoc] at goal,
exact goal.symm,
end
end support
-- comment by Cedric: would be nicer to define just a subset, and then show it is a subgroup
def rigid_stabilizer' (G : Type*) [group G] [mul_action G α] (U : set α) : set G := {g : G | ∀x : α, g • x = x x ∈ U}
def rigid_stabilizer (G : Type*) [group G] [mul_action G α] (U : set α) : subgroup G := {
carrier := {g : G | ∀x ∉ U, g • x = x},
mul_mem' := λ a b ha hb x x_notin_U, by rw [mul_smul a b x,hb x x_notin_U,ha x x_notin_U],
inv_mem' := λ _ hg x x_notin_U, smul_eq_iff_inv_smul_eq.mp (hg x x_notin_U),
one_mem' := λ x _, one_smul G x
}
lemma rist_supported_in_set {g : G} {U : set α} : g ∈ rigid_stabilizer G U → support α g ⊆ U :=
λ h x x_in_support, by_contradiction (x_in_support ∘ (h x))
lemma rist_ss_rist {U V : set α} (V_ss_U : V ⊆ U) : (rigid_stabilizer G V : set G) ⊆ (rigid_stabilizer G U : set G) := begin
intros g g_in_ristV x x_notin_U,
have x_notin_V : x ∉ V, { intro x_in_V, exact x_notin_U (V_ss_U x_in_V) },
exact g_in_ristV x x_notin_V
end
end actions
----------------------------------------------------------------
section topological_actions
variables [topological_space α] [topological_space β]
class continuous_mul_action (G α : Type*) [group G] [topological_space α] extends mul_action G α :=
(continuous : ∀g : G, continuous (@has_smul.smul G α _ g))
structure equivariant_homeomorph (G α β : Type*) [group G] [topological_space α] [topological_space β] [mul_action G α] [mul_action G β] extends homeomorph α β :=
(equivariant : is_equivariant G to_fun)
lemma equivariant_fun [mul_action G α] [mul_action G β] (h : equivariant_homeomorph G α β) : is_equivariant G h.to_fun := h.equivariant
lemma equivariant_inv [mul_action G α] [mul_action G β] (h : equivariant_homeomorph G α β) : is_equivariant G h.inv_fun := begin
intros g x,
let e := congr_arg h.inv_fun (h.equivariant g (h.inv_fun x)),
rw [h.left_inv _,h.right_inv _] at e,
exact e.symm,
end
variables [continuous_mul_action G α]
lemma img_open_open (g : G) (U : set α) (h : is_open U) [continuous_mul_action G α] : is_open (g •'' U) :=
begin
rw smul''_eq_inv_preimage,
exact continuous.is_open_preimage (continuous_mul_action.continuous g⁻¹) U h
end
lemma support_open (g : G) [topological_space α] [t2_space α] [continuous_mul_action G α] : is_open (support α g) := begin
apply is_open_iff_forall_mem_open.mpr,
intros x xmoved,
rcases t2_space.t2 (g • x) x xmoved with ⟨U,V,open_U,open_V,gx_in_U,x_in_V,disjoint_U_V⟩,
exact ⟨V ∩ (g⁻¹ •'' U),
λ y yW, @disjoint.ne_of_mem α U V disjoint_U_V (g•y) y (mem_inv_smul''.mp (set.mem_of_mem_inter_right yW)) (set.mem_of_mem_inter_left yW),
is_open.inter open_V (img_open_open g⁻¹ U open_U),
⟨x_in_V,mem_inv_smul''.mpr gx_in_U⟩⟩
end
end topological_actions
----------------------------------------------------------------
section faithful_actions
variables [mul_action G α] [has_faithful_smul G α]
lemma faithful_moves_point {g : G} (h2 : ∀x : α, g • x = x) : g = 1 := begin
have h3 : ∀x : α, g • x = (1:G) • x := λ x, (h2 x).symm ▸ (one_smul G x).symm,
exact eq_of_smul_eq_smul h3,
end
lemma faithful_moves_point' {g : G} (α : Type*) [mul_action G α] [has_faithful_smul G α] : g ≠ 1 → ∃x : α, g • x ≠ x :=
λ k, by_contradiction (λ h, k $ faithful_moves_point $ not_exists_not.mp h)
lemma faithful_rist_moves_point {g : G} {U : set α} : g ∈ rigid_stabilizer G U → g ≠ 1 → ∃x ∈ U, g • x ≠ x := begin
intros g_rigid g_ne_one,
rcases faithful_moves_point' α g_ne_one with ⟨x,xmoved⟩,
exact ⟨x,rist_supported_in_set g_rigid xmoved,xmoved⟩
end
lemma ne_one_support_nempty {g : G} : g ≠ 1 → (support α g).nonempty := begin
intro h1,
cases (faithful_moves_point' α h1) with x _,
use x
end
-- FIXME: somehow clashes with another definition
lemma disjoint_commute {f g : G} : disjoint (support α f) (support α g) → commute f g := begin
intro hdisjoint,
rw ← commutator_element_eq_one_iff_commute,
apply (@faithful_moves_point _ α),
intro x,
rw [bracket_mul,mul_smul,mul_smul,mul_smul],
cases @or_not (x ∈ support α f) with hfmoved hffixed,
{ rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp (set.disjoint_left.mp hdisjoint hfmoved)),
mem_not_support.mp (set.disjoint_left.mp hdisjoint (inv_smul_in_support hfmoved)),smul_inv_smul] },
cases @or_not (x ∈ support α g) with hgmoved hgfixed,
{ rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp $ set.disjoint_right.mp hdisjoint (inv_smul_in_support hgmoved)),
smul_inv_smul,mem_not_support.mp hffixed] },
{ rw [smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hgfixed),smul_eq_iff_inv_smul_eq.mp (mem_not_support.mp hffixed),
mem_not_support.mp hgfixed,mem_not_support.mp hffixed] }
end
end faithful_actions
----------------------------------------------------------------
section rubin_actions
variables [topological_space α] [topological_space β]
def has_no_isolated_points (α : Type*) [topological_space α] := ∀x : α, (nhds_within x {x}ᶜ).ne_bot
def is_locally_dense (G α : Type*) [group G] [topological_space α] [mul_action G α] :=
∀U : set α, ∀p ∈ U, p ∈ interior (closure (mul_action.orbit (rigid_stabilizer G U) p))
structure rubin_action (G α : Type*) extends group G, topological_space α, mul_action G α, has_faithful_smul G α :=
(locally_compact : locally_compact_space α)
(hausdorff : t2_space α)
(no_isolated_points : has_no_isolated_points α)
(locally_dense : is_locally_dense G α)
end rubin_actions
----------------------------------------------------------------
section period
variables [mul_action G α]
noncomputable def period (p : α) (g : G) : :=
Inf { n : | n > 0 ∧ g ^ n • p = p }
lemma period_le_fix {p : α} {g : G} {m : } (m_pos : m > 0) (gmp_eq_p : g ^ m • p = p) : 0 < period p g ∧ period p g ≤ m := begin
split,
{ by_contra h', have period_zero : period p g = 0, linarith, rcases (nat.Inf_eq_zero.1 period_zero) with ⟨ cont, h_1 ⟩, linarith, exact set.eq_empty_iff_forall_not_mem.mp h ↑m ⟨ m_pos, gmp_eq_p ⟩ },
exact nat.Inf_le ⟨ m_pos, gmp_eq_p ⟩
end
lemma notfix_le_period {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0) (pmoves : ∀ (i : ), 0 < i → i < n → g ^ i • p ≠ p) : n ≤ period p g := begin
by_contra period_le,
exact (pmoves (period p g) period_pos (not_le.mp period_le)) (nat.Inf_mem (nat.nonempty_of_pos_Inf period_pos)).2
end
lemma notfix_le_period' {p : α} {g : G} {n : } (n_pos : n > 0) (period_pos : period p g > 0) (pmoves : ∀ (i : fin n), 0 < (i : ) → g ^ (i : ) • p ≠ p) : n ≤ period p g :=
notfix_le_period n_pos period_pos (λ (i : ) (i_pos : 0 < i) (i_lt_n : i < n), pmoves (⟨ i, i_lt_n ⟩ : fin n) i_pos )
lemma period_neutral_eq_one (p : α) : period p (1 : G) = 1 := begin
have : 0 < period p (1 : G) ∧ period p (1 : G) ≤ 1,
{ exact period_le_fix (by norm_num : 1 > 0) (by group_action : (1 : G) ^ 1 • p = p) },
linarith
end
def periods (U : set α) (H : subgroup G) : set :=
{ n : | ∃ (p : U) (g : H), period (p : α) (g : G) = n }
-- TODO: split into multiple lemmas
lemma period_lemma
{U : set α} (U_nonempty : U.nonempty)
{H : subgroup G} (exp_ne_zero : monoid.exponent H ≠ 0) :
(periods U H).nonempty ∧
bdd_above (periods U H) ∧
∃ (m : ) (m_pos : m > 0),
∀ (p : α) (g : H), g ^ m • p = p :=
begin
rcases (monoid.exponent_exists_iff_ne_zero.2 exp_ne_zero) with ⟨ m, m_pos, gm_eq_one ⟩,
have gmp_eq_p : ∀ (p : α) (g : H), g ^ m • p = p,
{ intros p g, rw gm_eq_one g, group_action },
have periods_nonempty : (periods U H).nonempty,
{ use 1, let p := U_nonempty.some, use p, exact set.nonempty.some_mem U_nonempty, use 1, exact period_neutral_eq_one p },
have periods_bounded : bdd_above (periods U H),
{ use m, intros some_period hperiod, rcases hperiod with ⟨ p, g, hperiod ⟩, rw ← hperiod, exact (period_le_fix m_pos (gmp_eq_p p g)).2 },
exact ⟨ periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p ⟩
end
lemma period_from_exponent
(U : set α) (U_nonempty : U.nonempty)
{H : subgroup G} (exp_ne_zero : monoid.exponent H ≠ 0) :
∃ (p : U) (g : H) (n : ), n > 0 ∧ period (p : α) (g : G) = n ∧ n = Sup (periods U H) :=
begin
rcases period_lemma U_nonempty exp_ne_zero with ⟨ periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p ⟩,
rcases nat.Sup_mem periods_nonempty periods_bounded with ⟨ p, g, hperiod ⟩,
exact ⟨ p, g, Sup (periods U H), hperiod ▸ (period_le_fix m_pos (gmp_eq_p p g)).1, hperiod, rfl ⟩
end
lemma zero_lt_period_le_Sup_periods
{U : set α} (U_nonempty : U.nonempty)
{H : subgroup G} (exp_ne_zero : monoid.exponent H ≠ 0) :
∀ (p : U) (g : H),
(0 < period (p : α) (g : G)) ∧ (period (p : α) (g : G) ≤ Sup (periods U H)) :=
begin
rcases period_lemma U_nonempty exp_ne_zero with ⟨ periods_nonempty, periods_bounded, m, m_pos, gmp_eq_p ⟩,
intros p g,
have period_in_periods : period (p : α) (g : G) ∈ periods U H,
{ use p, use g },
exact ⟨ (period_le_fix m_pos (gmp_eq_p p g)).1, le_cSup periods_bounded period_in_periods ⟩,
end
lemma pow_period_fix (p : α) (g : G) : g ^ (period p g) • p = p := begin
cases eq_zero_or_ne_zero (period p g),
{ rw h, finish },
{ exact (nat.Inf_mem (nat.nonempty_of_pos_Inf (nat.pos_of_ne_zero (@ne_zero.ne _ _ (period p g) h)))).2 }
end
end period
----------------------------------------------------------------
section algebraic_disjointness
variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α]
def is_locally_moving (G α : Type*) [group G] [topological_space α] [mul_action G α] :=
∀U : set α, is_open U → set.nonempty U → rigid_stabilizer G U ≠ ⊥
-- lemma dense_locally_moving : t2_space α ∧ has_no_isolated_points α ∧ is_locally_dense G α → is_locally_moving G α := begin
-- rintros ⟨t2α,nipα,ildGα⟩ U ioU neU,
-- by_contra,
-- have some_in_U := ildGα U neU.some neU.some_mem,
-- rw [h,orbit_bot G neU.some,@closure_singleton α _ (@t2_space.t1_space α _ t2α) neU.some,@interior_singleton α _ neU.some (nipα neU.some)] at some_in_U,
-- tauto
-- end
-- lemma disjoint_nbhd {g : G} {x : α} [t2_space α] : g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ disjoint U (g •'' U) := begin
-- intro xmoved,
-- rcases t2_space.t2 (g • x) x xmoved with ⟨V,W,open_V,open_W,gx_in_V,x_in_W,disjoint_V_W⟩,
-- let U := (g⁻¹ •'' V) ∩ W,
-- use U,
-- split,
-- exact is_open.inter (img_open_open g⁻¹ V open_V) open_W,
-- split,
-- exact ⟨mem_inv_smul''.mpr gx_in_V,x_in_W⟩,
-- exact set.disjoint_of_subset
-- (set.inter_subset_right (g⁻¹•''V) W)
-- (λ y hy, smul_inv_smul g y ▸ mem_inv_smul''.mp (set.mem_of_mem_inter_left (mem_smul''.mp hy)) : g•''U ⊆ V)
-- disjoint_V_W.symm
-- end
-- lemma disjoint_nbhd_in {g : G} {x : α} [t2_space α] {V : set α} : is_open V → x ∈ V → g • x ≠ x → ∃U : set α, is_open U ∧ x ∈ U ∧ U ⊆ V ∧ disjoint U (g •'' U) := begin
-- intros open_V x_in_V xmoved,
-- rcases disjoint_nbhd xmoved with ⟨W,open_W,x_in_W,disjoint_W⟩,
-- let U := W ∩ V,
-- use U,
-- split,
-- exact is_open.inter open_W open_V,
-- split,
-- exact ⟨x_in_W,x_in_V⟩,
-- split,
-- exact set.inter_subset_right W V,
-- exact set.disjoint_of_subset
-- (set.inter_subset_left W V)
-- ((@smul''_inter _ _ _ _ g W V).symm ▸ set.inter_subset_left (g•''W) (g•''V) : g•''U ⊆ g•''W)
-- disjoint_W
-- end
-- lemma rewrite_Union (f : fin 2 × fin 2 → set α) : ((i : fin 2 × fin 2), f i) = (f (0,0) f (0,1)) (f (1,0) f (1,1)) := begin
-- ext,
-- simp only [set.mem_Union, set.mem_union],
-- split,
-- { simp only [forall_exists_index],
-- intro i,
-- fin_cases i; simp {contextual := tt}, },
-- { rintro ((h|h)|(h|h)); exact ⟨_, h⟩, },
-- end
-- lemma proposition_1_1_1 (f g : G) (locally_moving : is_locally_moving G α) [t2_space α] : disjoint (support α f) (support α g) → is_algebraically_disjoint f g := begin
-- intros disjoint_f_g h hfh,
-- let support_f := support α f,
-- -- h is not the identity on support α f
-- cases set.not_disjoint_iff.mp (mt (@disjoint_commute G α _ _ _ _ _) hfh) with x hx,
-- let x_in_support_f := hx.1,
-- let hx_ne_x := mem_support.mp hx.2,
-- -- so since α is Hausdoff there is V nonempty ⊆ support α f with h•''V disjoint from V
-- rcases disjoint_nbhd_in (support_open f) x_in_support_f hx_ne_x with ⟨V,open_V,x_in_V,V_in_support,disjoint_img_V⟩,
-- let ristV_ne_bot := locally_moving V open_V (set.nonempty_of_mem x_in_V),
-- -- let f₂ be a nontrivial element of rigid_stabilizer G V
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₂,f₂_in_ristV,f₂_ne_one⟩,
-- -- again since α is Hausdorff there is W nonempty ⊆ V with f₂•''W disjoint from W
-- rcases faithful_moves_point' α f₂_ne_one with ⟨y,ymoved⟩,
-- let y_in_V : y ∈ V := (rist_supported_in_set f₂_in_ristV) (mem_support.mpr ymoved),
-- rcases disjoint_nbhd_in open_V y_in_V ymoved with ⟨W,open_W,y_in_W,W_in_V,disjoint_img_W⟩,
-- -- let f₁ be a nontrivial element of rigid_stabilizer G W
-- let ristW_ne_bot := locally_moving W open_W (set.nonempty_of_mem y_in_W),
-- rcases (or_iff_right ristW_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨f₁,f₁_in_ristW,f₁_ne_one⟩,
-- use f₁, use f₂,
-- -- note that f₁,f₂ commute with g since their support is in support α f
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (set.subset.trans (rist_supported_in_set f₁_in_ristW) W_in_V) V_in_support) disjoint_f_g),
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left (set.subset.trans (rist_supported_in_set f₂_in_ristV) V_in_support) disjoint_f_g),
-- -- we claim that [f₁,[f₂,h]] is a nontrivial element of centralizer G g
-- let k := ⁅f₂,h⁆,
-- -- first, h*f₂⁻¹*h⁻¹ is supported on h V, so k := [f₂,h] agrees with f₂ on V
-- have h2 : ∀z ∈ W, f₂•z = k•z := λ z z_in_W,
-- (disjoint_support_comm f₂ h (rist_supported_in_set f₂_in_ristV) disjoint_img_V z (W_in_V z_in_W)).symm,
-- -- then k*f₁⁻¹*k⁻¹ is supported on k W = f₂ W, so [f₁,k] is supported on W f₂ W ⊆ V ⊆ support f, so commutes with g.
-- have h3 : support α ⁅f₁,k⁆ ⊆ support α f := begin
-- let := (support_comm α k f₁).trans (set.union_subset_union (rist_supported_in_set f₁_in_ristW) (smul''_subset k $ rist_supported_in_set f₁_in_ristW)),
-- rw [← commutator_element_inv,support_inv,(smul''_eq_of_smul_eq h2).symm] at this,
-- exact (this.trans $ (set.union_subset_union W_in_V (moves_subset_within_support f₂ W V W_in_V $ rist_supported_in_set f₂_in_ristV)).trans $ eq.subset V.union_self).trans V_in_support
-- end,
-- split,
-- exact disjoint_commute (set.disjoint_of_subset_left h3 disjoint_f_g),
-- -- finally, [f₁,k] agrees with f₁ on W, so is not the identity.
-- have h4 : ∀z ∈ W, ⁅f₁,k⁆•z = f₁•z :=
-- disjoint_support_comm f₁ k (rist_supported_in_set f₁_in_ristW) (smul''_eq_of_smul_eq h2 ▸ disjoint_img_W),
-- rcases faithful_rist_moves_point f₁_in_ristW f₁_ne_one with ⟨z,z_in_W,z_moved⟩,
-- by_contra h5,
-- exact ((h4 z z_in_W).symm ▸ z_moved : ⁅f₁, k⁆ • z ≠ z) ((congr_arg (λg : G, g•z) h5).trans (one_smul G z)),
-- end
-- @[simp] lemma smul''_mul {g h : G} {U : set α} : g •'' (h •'' U) = (g*h) •'' U :=
-- (mul_smul'' g h U).symm
-- lemma disjoint_nbhd_fin {ι : Type*} [fintype ι] {f : ι → G} {x : α} [t2_space α] : (λi : ι, f i • x).injective → ∃U : set α, is_open U ∧ x ∈ U ∧ (∀i j : ι, i ≠ j → disjoint (f i •'' U) (f j •'' U)) := begin
-- intro f_injective,
-- let disjoint_hyp := λi j (i_ne_j : i≠j), let x_moved : ((f j)⁻¹ * f i) • x ≠ x := begin
-- by_contra,
-- let := smul_congr (f j) h,
-- rw [mul_smul, ← mul_smul,mul_right_inv,one_smul] at this,
-- from i_ne_j (f_injective this),
-- end in disjoint_nbhd x_moved,
-- let ι2 := { p : ι×ι // p.1 ≠ p.2 },
-- let U := ⋂(p : ι2), (disjoint_hyp p.1.1 p.1.2 p.2).some,
-- use U,
-- split,
-- exact is_open_Inter (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.1),
-- split,
-- exact set.mem_Inter.mpr (λp : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some_spec.2.1),
-- intros i j i_ne_j,
-- let U_inc := set.Inter_subset (λ p : ι2, (disjoint_hyp p.1.1 p.1.2 p.2).some) ⟨⟨i,j⟩,i_ne_j⟩,
-- let := (disjoint_smul'' (f j) (set.disjoint_of_subset U_inc (smul''_subset ((f j)⁻¹ * (f i)) U_inc) (disjoint_hyp i j i_ne_j).some_spec.2.2)).symm,
-- simp only [subtype.val_eq_coe, smul''_mul, mul_inv_cancel_left] at this,
-- from this
-- end
-- lemma moves_inj {g : G} {x : α} {n : } (period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- intros i j same_img,
-- by_contra i_ne_j,
-- let same_img' := congr_arg ((•) (g ^ (-(j : )))) same_img,
-- simp only [inv_smul_smul] at same_img',
-- rw [← mul_smul,← mul_smul,← zpow_add,← zpow_add,add_comm] at same_img',
-- simp only [add_left_neg, zpow_zero, one_smul] at same_img',
-- let ij := |(i:) - (j:)|,
-- rw ← sub_eq_add_neg at same_img',
-- have xfixed : g^ij • x = x := begin
-- cases abs_cases ((i:) - (j:)),
-- { rw ← h.1 at same_img', exact same_img' },
-- { rw [smul_eq_iff_inv_smul_eq,← zpow_neg,← h.1] at same_img', exact same_img' }
-- end,
-- have ij_ge_1 : 1 ≤ ij := int.add_one_le_iff.mpr (abs_pos.mpr $ sub_ne_zero.mpr $ norm_num.nat_cast_ne i j ↑i ↑j rfl rfl (fin.vne_of_ne i_ne_j)),
-- let neg_le := int.sub_lt_sub_of_le_of_lt (nat.cast_nonneg i) (nat.cast_lt.mpr (fin.prop _)),
-- rw zero_sub at neg_le,
-- let le_pos := int.sub_lt_sub_of_lt_of_le (nat.cast_lt.mpr (fin.prop _)) (nat.cast_nonneg j),
-- rw sub_zero at le_pos,
-- have ij_lt_n : ij < n := abs_lt.mpr ⟨ neg_le, le_pos ⟩,
-- exact period_ge_n ij ij_ge_1 ij_lt_n xfixed,
-- end
-- lemma int_to_nat (k : ) (k_pos : k ≥ 1) : k = k.nat_abs := begin
-- cases (int.nat_abs_eq k),
-- { exact h },
-- { have : -(k.nat_abs : ) ≤ 0 := neg_nonpos.mpr (int.nat_abs k).cast_nonneg,
-- rw ← h at this, by_contra, linarith }
-- end
-- lemma moves_inj_N {g : G} {x : α} {n : } (period_ge_n' : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x) : function.injective (λ (i : fin n), g ^ (i : ) • x) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • x ≠ x,
-- { intros k one_le_k k_lt_n,
-- have one_le_k_nat : 1 ≤ k.nat_abs := ((int.coe_nat_le_coe_nat_iff 1 k.nat_abs).1 ((int_to_nat k one_le_k) ▸ one_le_k)),
-- have k_nat_lt_n : k.nat_abs < n := ((int.coe_nat_lt_coe_nat_iff k.nat_abs n).1 ((int_to_nat k one_le_k) ▸ k_lt_n)),
-- have := period_ge_n' k.nat_abs one_le_k_nat k_nat_lt_n,
-- rw [(zpow_coe_nat g k.nat_abs).symm, (int_to_nat k one_le_k).symm] at this,
-- exact this },
-- have := moves_inj period_ge_n,
-- finish
-- end
-- lemma moves_1234_of_moves_12 {g : G} {x : α} (xmoves : g^12 • x ≠ x) : function.injective (λi : fin 5, g^(i:) • x) := begin
-- apply moves_inj,
-- intros k k_ge_1 k_lt_5,
-- by_contra xfixed,
-- have k_div_12 : k * (12 / k) = 12 := begin
-- interval_cases using k_ge_1 k_lt_5; norm_num
-- end,
-- have veryfixed : g^12 • x = x := begin
-- let := smul_zpow_eq_of_smul_eq (12/k) xfixed,
-- rw [← zpow_mul,k_div_12] at this,
-- norm_cast at this
-- end,
-- exact xmoves veryfixed
-- end
-- lemma proposition_1_1_2 (f g : G) [t2_space α] : is_locally_moving G α → is_algebraically_disjoint f g → disjoint (support α f) (support α (g^12)) := begin
-- intros locally_moving alg_disjoint,
-- -- suppose to the contrary that the set U = supp(f) ∩ supp(g^12) is nonempty
-- by_contra not_disjoint,
-- let U := support α f ∩ support α (g^12),
-- have U_nonempty : U.nonempty := set.not_disjoint_iff_nonempty_inter.mp not_disjoint,
-- -- since X is Hausdorff, we can find a nonempty open set V ⊆ U such that f(V) is disjoint from V and the sets {g^i(V): i=0..4} are pairwise disjoint
-- let x := U_nonempty.some,
-- have five_points : function.injective (λi : fin 5, g^(i:) • x) := moves_1234_of_moves_12 (mem_support.mp $ (set.inter_subset_right _ _) U_nonempty.some_mem),
-- rcases disjoint_nbhd_in (is_open.inter (support_open f) (support_open $ g^12)) U_nonempty.some_mem ((set.inter_subset_left _ _) U_nonempty.some_mem) with ⟨V₀,open_V₀,x_in_V₀,V₀_in_support,disjoint_img_V₀⟩,
-- rcases disjoint_nbhd_fin five_points with ⟨V₁,open_V₁,x_in_V₁,disjoint_img_V₁⟩,
-- simp only at disjoint_img_V₁,
-- let V := V₀ ∩ V₁,
-- -- let h be a nontrivial element of rigid_stabilizer G V, and note that [f,h]≠1 since f(V) is disjoint from V
-- let ristV_ne_bot := locally_moving V (is_open.inter open_V₀ open_V₁) (set.nonempty_of_mem ⟨x_in_V₀,x_in_V₁⟩),
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- have comm_non_trivial : ¬commute f h := begin
-- by_contra comm_trivial,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨z,z_in_V,z_moved⟩,
-- let act_comm := disjoint_support_comm h f (rist_supported_in_set h_in_ristV) (set.disjoint_of_subset (set.inter_subset_left V₀ V₁) (smul''_subset f (set.inter_subset_left V₀ V₁)) disjoint_img_V₀) z z_in_V,
-- rw [commutator_element_eq_one_iff_commute.mpr comm_trivial.symm,one_smul] at act_comm,
-- exact z_moved act_comm.symm,
-- end,
-- -- since g is algebraically disjoint from f, there exist f₁,f₂ ∈ C_G(g) so that the commutator h' = [f1,[f2,h]] is a nontrivial element of C_G(g)
-- rcases alg_disjoint h comm_non_trivial with ⟨f₁,f₂,f₁_commutes,f₂_commutes,h'_commutes,h'_non_trivial⟩,
-- let h' := ⁅f₁,⁅f₂,h⁆⁆,
-- -- now observe that supp([f₂, h]) ⊆ V f₂(V), and by the same reasoning supp(h')⊆Vf₁(V)f₂(V)f₁f₂(V)
-- have support_f₂h : support α ⁅f₂,h⁆ ⊆ V (f₂ •'' V) := (support_comm α f₂ h).trans (set.union_subset_union (rist_supported_in_set h_in_ristV) $ smul''_subset f₂ $ rist_supported_in_set h_in_ristV),
-- have support_h' : support α h' ⊆ (i : fin 2 × fin 2), (f₁^i.1.val*f₂^i.2.val) •'' V := begin
-- let this := (support_comm α f₁ ⁅f₂,h⁆).trans (set.union_subset_union support_f₂h (smul''_subset f₁ support_f₂h)),
-- rw [smul''_union,← one_smul'' V,← mul_smul'',← mul_smul'',← mul_smul'',mul_one,mul_one] at this,
-- let rw_u := rewrite_Union (λi : fin 2 × fin 2, (f₁^i.1.val*f₂^i.2.val) •'' V),
-- simp only [fin.val_eq_coe, fin.val_zero', pow_zero, mul_one, fin.val_one, pow_one, one_mul] at rw_u,
-- exact rw_u.symm ▸ this,
-- end,
-- -- since h' is nontrivial, it has at least one point p in its support
-- cases faithful_moves_point' α h'_non_trivial with p p_moves,
-- -- since g commutes with h', all five of the points {gi(p):i=0..4} lie in supp(h')
-- have gi_in_support : ∀i : fin 5, g^i.val • p ∈ support α h' := begin
-- intro i,
-- rw mem_support,
-- by_contra p_fixed,
-- rw [← mul_smul,(h'_commutes.pow_right i.val).eq,mul_smul,smul_left_cancel_iff] at p_fixed,
-- exact p_moves p_fixed,
-- end,
-- -- by the pigeonhole principle, one of the four sets V, f₁(V), f₂(V), f₁f₂(V) must contain two of these points, say g^i(p),g^j(p) ∈ k(V) for some 0 ≤ i < j ≤ 4 and k ∈ {1,f₁,f₂,f₁f₂}
-- let pigeonhole : fintype.card (fin 5) > fintype.card (fin 2 × fin 2) := dec_trivial,
-- let choice := λi : fin 5, (set.mem_Union.mp $ support_h' $ gi_in_support i).some,
-- rcases finset.exists_ne_map_eq_of_card_lt_of_maps_to pigeonhole (λ(i : fin 5) _, finset.mem_univ (choice i)) with ⟨i,_,j,_,i_ne_j,same_choice⟩,
-- clear h_1_w h_1_h_h_w pigeonhole,
-- let k := f₁^(choice i).1.val*f₂^(choice i).2.val,
-- have same_k : f₁^(choice j).1.val*f₂^(choice j).2.val = k := by { simp only at same_choice,
-- rw ← same_choice },
-- have g_i : g^i.val • p ∈ k •'' V := (set.mem_Union.mp $ support_h' $ gi_in_support i).some_spec,
-- have g_j : g^j.val • p ∈ k •'' V := same_k ▸ (set.mem_Union.mp $ support_h' $ gi_in_support j).some_spec,
-- -- but since g^(ji)(V) is disjoint from V and k commutes with g, we know that g^(ji)k(V) is disjoint from k(V), a contradiction since g^i(p) and g^j(p) both lie in k(V).
-- have g_disjoint : disjoint ((g^i.val)⁻¹ •'' V) ((g^j.val)⁻¹ •'' V) := begin
-- let := (disjoint_smul'' (g^(-(i.val+j.val : ))) (disjoint_img_V₁ i j i_ne_j)).symm,
-- rw [← mul_smul'',← mul_smul'',← zpow_add,← zpow_add] at this,
-- simp only [fin.val_eq_coe, neg_add_rev, coe_coe, neg_add_cancel_right, zpow_neg, zpow_coe_nat, neg_add_cancel_comm] at this,
-- from set.disjoint_of_subset (smul''_subset _ (set.inter_subset_right V₀ V₁)) (smul''_subset _ (set.inter_subset_right V₀ V₁)) this
-- end,
-- have k_commutes : commute k g := commute.mul_left (f₁_commutes.pow_left (choice i).1.val) (f₂_commutes.pow_left (choice i).2.val),
-- have g_k_disjoint : disjoint ((g^i.val)⁻¹ •'' (k •'' V)) ((g^j.val)⁻¹ •'' (k •'' V)) := begin
-- let this := disjoint_smul'' k g_disjoint,
-- rw [← mul_smul'',← mul_smul'',← inv_pow g i.val,← inv_pow g j.val,
-- ← (k_commutes.symm.inv_left.pow_left i.val).eq,
-- ← (k_commutes.symm.inv_left.pow_left j.val).eq,
-- mul_smul'',inv_pow g i.val,mul_smul'' (g⁻¹^j.val) k V,inv_pow g j.val] at this,
-- from this
-- end,
-- exact set.disjoint_left.mp g_k_disjoint (mem_inv_smul''.mpr g_i) (mem_inv_smul''.mpr g_j)
-- end
-- lemma remark_1_2 (f g : G) : is_algebraically_disjoint f g → commute f g := begin
-- intro alg_disjoint,
-- by_contra non_commute,
-- rcases alg_disjoint g non_commute with ⟨_,_,_,b,_,d⟩,
-- rw [commutator_element_eq_one_iff_commute.mpr b,commutator_element_one_right] at d,
-- tauto
-- end
-- section remark_1_3
-- def G := equiv.perm (fin 2)
-- def σ := equiv.swap (0 : fin 2) (1 : fin 2)
-- example : is_algebraically_disjoint σ σ := begin
-- intro h,
-- fin_cases h,
-- intro hyp1,
-- exfalso,
-- swap, intro hyp2, exfalso,
-- -- is commute decidable? cc,
-- sorry -- dec_trivial
-- sorry -- second sorry needed
-- end
-- end remark_1_3
end algebraic_disjointness
----------------------------------------------------------------
section regular_support
variables [topological_space α] [continuous_mul_action G α]
def interior_closure (U : set α) := interior (closure U)
lemma is_open_interior_closure (U : set α) : is_open (interior_closure U) := is_open_interior
lemma interior_closure_mono {U V : set α} : U ⊆ V → interior_closure U ⊆ interior_closure V :=
interior_mono ∘ closure_mono
def set.is_regular_open (U : set α) := interior_closure U = U
lemma set.is_regular_def (U : set α) : U.is_regular_open ↔ interior_closure U = U := by refl
lemma is_open.in_closure {U : set α} : is_open U → U ⊆ interior (closure U) := begin
intros U_open x x_in_U,
apply interior_mono subset_closure,
rw U_open.interior_eq,
exact x_in_U
end
lemma is_open.interior_closure_subset {U : set α} : is_open U → U ⊆ interior_closure U :=
λ h, (subset_interior_iff_is_open.mpr h).trans (interior_mono subset_closure)
lemma regular_interior_closure (U : set α) : (interior_closure U).is_regular_open := begin
rw set.is_regular_def,
apply set.subset.antisymm,
exact interior_mono ((closure_mono interior_subset).trans (subset_of_eq closure_closure)),
exact (subset_of_eq interior_interior.symm).trans (interior_mono subset_closure)
end
def regular_support (α : Type*) [topological_space α] [mul_action G α] (g : G) := interior_closure (support α g)
lemma regular_regular_support {g : G} : (regular_support α g).is_regular_open := regular_interior_closure _
lemma support_in_regular_support [t2_space α] (g : G) : support α g ⊆ regular_support α g := is_open.interior_closure_subset (support_open g)
lemma mem_regular_support (g : G) (U : set α) : U.is_regular_open → g ∈ rigid_stabilizer G U → regular_support α g ⊆ U :=
λ U_ro g_moves, (set.is_regular_def _).mp U_ro ▸ (interior_closure_mono (rist_supported_in_set g_moves))
-- FIXME: Weird naming?
def algebraic_centralizer (f : G) : set G := { h | ∃g, h = g^12 ∧ is_algebraically_disjoint f g }
end regular_support
-- ----------------------------------------------------------------
-- section finite_exponent
-- lemma coe_nat_fin {n i : } (h : i < n) : ∃ (i' : fin n), i = i' := ⟨ ⟨ i, h ⟩, rfl ⟩
-- variables [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α]
-- lemma distinct_images_from_disjoint {g : G} {V : set α} {n : }
-- (n_pos : 0 < n)
-- (h_disj : ∀ (i j : fin n) (i_ne_j : i ≠ j), disjoint (g ^ (i : ) •'' V) (g ^ (j : ) •'' V)) :
-- ∀ (q : α) (hq : q ∈ V) (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V :=
-- begin
-- intros q hq i i_pos hcontra,
-- have i_ne_zero : i ≠ (⟨ 0, n_pos ⟩ : fin n), { intro, finish },
-- have hcontra' : g ^ (i : ) • (q : α) ∈ g ^ (i : ) •'' V, exact ⟨ q, hq, rfl ⟩,
-- have giq_notin_V := set.disjoint_left.mp (h_disj i (⟨ 0, n_pos ⟩ : fin n) i_ne_zero) hcontra',
-- exact ((by finish : g ^ 0•''V = V) ▸ giq_notin_V) hcontra
-- end
-- lemma moves_inj_period {g : G} {p : α} {n : } (period_eq_n : period p g = n) : function.injective (λ (i : fin n), g ^ (i : ) • p) := begin
-- have period_ge_n : ∀ (k : ), 1 ≤ k → k < n → g ^ k • p ≠ p,
-- { intros k one_le_k k_lt_n gkp_eq_p,
-- have := period_le_fix (nat.succ_le_iff.mp one_le_k) gkp_eq_p,
-- rw period_eq_n at this,
-- linarith },
-- exact moves_inj_N period_ge_n
-- end
-- lemma lemma_2_2 {α : Type u_2} [topological_space α] [continuous_mul_action G α] [has_faithful_smul G α] [t2_space α]
-- (U : set α) (U_open : is_open U) (locally_moving : is_locally_moving G α) :
-- U.nonempty → monoid.exponent (rigid_stabilizer G U) = 0 :=
-- begin
-- intro U_nonempty,
-- by_contra exp_ne_zero,
-- rcases (period_from_exponent U U_nonempty exp_ne_zero) with ⟨ p, g, n, n_pos, hpgn, n_eq_Sup ⟩,
-- rcases disjoint_nbhd_fin (moves_inj_period hpgn) with ⟨ V', V'_open, p_in_V', disj' ⟩,
-- dsimp at disj',
-- let V := U ∩ V',
-- have V_ss_U : V ⊆ U := set.inter_subset_left U V',
-- have V'_ss_V : V ⊆ V' := set.inter_subset_right U V',
-- have V_open : is_open V := is_open.inter U_open V'_open,
-- have p_in_V : (p : α) ∈ V := ⟨ subtype.mem p, p_in_V' ⟩,
-- have disj : ∀ (i j : fin n), ¬ i = j → disjoint (↑g ^ ↑i•''V) (↑g ^ ↑j•''V),
-- { intros i j i_ne_j W W_ss_giV W_ss_gjV,
-- exact disj' i j i_ne_j
-- (set.subset.trans W_ss_giV (smul''_subset (↑g ^ ↑i) V'_ss_V))
-- (set.subset.trans W_ss_gjV (smul''_subset (↑g ^ ↑j) V'_ss_V)) },
-- have ristV_ne_bot := locally_moving V V_open (set.nonempty_of_mem p_in_V),
-- rcases (or_iff_right ristV_ne_bot).mp (subgroup.bot_or_exists_ne_one _) with ⟨h,h_in_ristV,h_ne_one⟩,
-- rcases faithful_rist_moves_point h_in_ristV h_ne_one with ⟨ q, q_in_V, hq_ne_q ⟩,
-- have hg_in_ristU : (h : G) * (g : G) ∈ rigid_stabilizer G U := (rigid_stabilizer G U).mul_mem' (rist_ss_rist V_ss_U h_in_ristV) (subtype.mem g),
-- have giq_notin_V : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ∉ V := distinct_images_from_disjoint n_pos disj q q_in_V,
-- have giq_ne_q : ∀ (i : fin n), (i : ) > 0 → g ^ (i : ) • (q : α) ≠ (q : α),
-- { intros i i_pos giq_eq_q, exact (giq_eq_q ▸ (giq_notin_V i i_pos)) q_in_V, },
-- have q_in_U : q ∈ U, { have : q ∈ U ∩ V' := q_in_V, exact this.1 },
-- -- We have (hg)^i q = g^i q for all 0 < i < n
-- have pow_hgq_eq_pow_gq : ∀ (i : fin n), (i : ) < n → (h * g) ^ (i : ) • q = (g : G) ^ (i : ) • q,
-- { intros i, induction (i : ) with i',
-- { intro, repeat {rw pow_zero} },
-- { intro succ_i'_lt_n,
-- rw [smul_succ, ih (nat.lt_of_succ_lt succ_i'_lt_n), smul_smul, mul_assoc, ← smul_smul, ← smul_smul, ← smul_succ],
-- have image_q_notin_V : g ^ i'.succ • q ∉ V,
-- { have i'succ_ne_zero := ne_zero.pos i'.succ,
-- exact giq_notin_V (⟨ i'.succ, succ_i'_lt_n ⟩ : fin n) i'succ_ne_zero },
-- exact by_contradiction (λ c, c (by_contradiction (λ c', image_q_notin_V ((rist_supported_in_set h_in_ristV) c')))) } },
-- -- Combined with g^i q ≠ q, this yields (hg)^i q ≠ q for all 0 < i < n
-- have hgiq_ne_q : ∀ (i : fin n), (i : ) > 0 → (h * g) ^ (i : ) • q ≠ q,
-- { intros i i_pos, rw pow_hgq_eq_pow_gq i (fin.is_lt i), by_contra c, exact (giq_notin_V i i_pos) (c.symm ▸ q_in_V) },
-- -- This even holds for i = n
-- have hgnq_ne_q : (h * g) ^ n • q ≠ q,
-- { -- Rewrite (hg)^n q = hg^n q
-- have npred_lt_n : n.pred < n, exact (nat.succ_pred_eq_of_pos n_pos) ▸ (lt_add_one n.pred),
-- rcases coe_nat_fin npred_lt_n with ⟨ i', i'_eq_pred_n ⟩,
-- have hgi'q_eq_gi'q := pow_hgq_eq_pow_gq i' (i'_eq_pred_n ▸ npred_lt_n),
-- have : n = (i' : ).succ := i'_eq_pred_n ▸ (nat.succ_pred_eq_of_pos n_pos).symm,
-- rw [this, smul_succ, hgi'q_eq_gi'q, ← smul_smul, ← smul_succ, ← this],
-- -- Now it follows from g^n q = q and h q ≠ q
-- have n_le_period_qg := notfix_le_period' n_pos ((zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g)).1 giq_ne_q,
-- have period_qg_le_n := (zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) g).2, rw ← n_eq_Sup at period_qg_le_n,
-- exact (ge_antisymm period_qg_le_n n_le_period_qg).symm ▸ ((pow_period_fix q (g : G)).symm ▸ hq_ne_q) },
-- -- Finally, we derive a contradiction
-- have period_pos_le_n := zero_lt_period_le_Sup_periods U_nonempty exp_ne_zero (⟨ q, q_in_U ⟩ : U) (⟨ h * g, hg_in_ristU ⟩ : rigid_stabilizer G U),
-- rw ← n_eq_Sup at period_pos_le_n,
-- cases (lt_or_eq_of_le period_pos_le_n.2),
-- { exact (hgiq_ne_q (⟨ (period (q : α) ((h : G) * (g : G))), h_1 ⟩ : fin n) period_pos_le_n.1) (pow_period_fix (q : α) ((h : G) * (g : G))) },
-- { exact hgnq_ne_q (h_1 ▸ (pow_period_fix (q : α) ((h : G) * (g : G)))) }
-- end
-- lemma proposition_2_1 [t2_space α] (f : G) : is_locally_moving G α → (algebraic_centralizer f).centralizer = rigid_stabilizer G (regular_support α f) := sorry
-- end finite_exponent
-- variables [topological_space α] [topological_space β] [continuous_mul_action G α] [continuous_mul_action G β]
-- noncomputable theorem rubin (hα : rubin_action G α) (hβ : rubin_action G β) : equivariant_homeomorph G α β := sorry
end rubin