You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

388 lines
15 KiB

From iris.proofmode Require Import coq_tactics reduction spec_patterns.
From iris.proofmode Require Export tactics.
From iris.heap_lang Require Export tactics.
From iris.heap_lang Require Import notation.
From semantics.pl.heap_lang Require Export derived_laws.
From semantics.pl.program_logic Require Export notation.
From iris.prelude Require Import options.
Import uPred.
Lemma tac_wp_expr_eval `{!heapGS Σ} Δ s E1 E2 Φ e e' :
( (e'':=e'), e = e'')
envs_entails Δ (WP e' @ s; E1; E2 {{ Φ }}) envs_entails Δ (WP e @ s; E1; E2 {{ Φ }}).
Proof. by intros ->. Qed.
Tactic Notation "wp_expr_eval" tactic3(t) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
notypeclasses refine (tac_wp_expr_eval _ _ _ _ _ e _ _ _);
[let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|]
| _ => fail "wp_expr_eval: not a 'wp'"
end.
Ltac wp_expr_simpl := wp_expr_eval simpl.
Lemma tac_wp_pure `{!heapGS Σ} Δ Δ' s E1 E2 K e1 e2 φ n Φ :
PureExec φ n e1 e2
φ
MaybeIntoLaterNEnvs n Δ Δ'
envs_entails Δ' (WP (fill K e2) @ s; E1; E2 {{ Φ }})
envs_entails Δ (WP (fill K e1) @ s; E1; E2 {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ??? HΔ'. rewrite into_laterN_env_sound /=.
(* We want [pure_exec_fill] to be available to TC search locally. *)
pose proof @pure_exec_fill.
rewrite HΔ' -lifting.wp_pure_step_later //.
Qed.
Lemma tac_wp_value_nofupd `{!heapGS Σ} Δ s E Φ v :
envs_entails Δ (Φ v) envs_entails Δ (WP (Val v) @ s; E; E {{ Φ }}).
Proof. rewrite envs_entails_unseal=> ->. by apply wp_value. Qed.
(** Simplify the goal if it is [WP] of a value.
If the postcondition already allows a fupd, do not add a second one.
But otherwise, *do* add a fupd. This ensures that all the lemmas applied
here are bidirectional, so we never will make a goal unprovable. *)
Ltac wp_value_head :=
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 (Val _) _) =>
eapply tac_wp_value_nofupd
end.
Ltac wp_finish :=
wp_expr_simpl; (* simplify occurences of subst/fill *)
pm_prettify. (* prettify ▷s caused by [MaybeIntoLaterNEnvs] and
λs caused by wp_value *)
Ltac solve_vals_compare_safe :=
(* The first branch is for when we have [vals_compare_safe] in the context.
The other two branches are for when either one of the branches reduces to
[True] or we have it in the context. *)
fast_done || (left; fast_done) || (right; fast_done).
(** The argument [efoc] can be used to specify the construct that should be
reduced. For example, you can write [wp_pure (EIf _ _ _)], which will search
for an [EIf _ _ _] in the expression, and reduce it.
The use of [open_constr] in this tactic is essential. It will convert all holes
(i.e. [_]s) into evars, that later get unified when an occurences is found
(see [unify e' efoc] in the code below). *)
Tactic Notation "wp_pure" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
let e := eval simpl in e in
reshape_expr e ltac:(fun K e' =>
unify e' efoc;
eapply (tac_wp_pure _ _ _ _ _ K e');
[tc_solve (* PureExec *)
|try solve_vals_compare_safe (* The pure condition for PureExec --
handles trivial goals, including [vals_compare_safe] *)
|tc_solve (* IntoLaters *)
|wp_finish (* new goal *)
])
|| fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex"
| _ => fail "wp_pure: not a 'wp'"
end.
Ltac wp_pures :=
iStartProof;
first [ (* The `;[]` makes sure that no side-condition magically spawns. *)
progress repeat (wp_pure _; [])
| wp_finish (* In case wp_pure never ran, make sure we do the usual cleanup. *)
].
(** Unlike [wp_pures], the tactics [wp_rec] and [wp_lam] should also reduce
lambdas/recs that are hidden behind a definition, i.e. they should use
[AsRecV_recv] as a proper instance instead of a [Hint Extern].
We achieve this by putting [AsRecV_recv] in the current environment so that it
can be used as an instance by the typeclass resolution system. We then perform
the reduction, and finally we clear this new hypothesis. *)
Tactic Notation "wp_rec" :=
let H := fresh in
assert (H := AsRecV_recv);
wp_pure (App _ _);
clear H.
Tactic Notation "wp_if" := wp_pure (If _ _ _).
Tactic Notation "wp_if_true" := wp_pure (If (LitV (LitBool true)) _ _).
Tactic Notation "wp_if_false" := wp_pure (If (LitV (LitBool false)) _ _).
Tactic Notation "wp_unop" := wp_pure (UnOp _ _).
Tactic Notation "wp_binop" := wp_pure (BinOp _ _ _).
Tactic Notation "wp_op" := wp_unop || wp_binop.
Tactic Notation "wp_lam" := wp_rec.
Tactic Notation "wp_let" := wp_pure (Rec BAnon (BNamed _) _); wp_lam.
Tactic Notation "wp_seq" := wp_pure (Rec BAnon BAnon _); wp_lam.
Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _).
Tactic Notation "wp_case" := wp_pure (Case _ _ _).
Tactic Notation "wp_match" := wp_case; wp_pure (Rec _ _ _); wp_lam.
Tactic Notation "wp_inj" := wp_pure (InjL _) || wp_pure (InjR _).
Tactic Notation "wp_pair" := wp_pure (Pair _ _).
Tactic Notation "wp_closure" := wp_pure (Rec _ _ _).
(* will spawn an evar for [E2] *)
Lemma tac_wp_bind `{!heapGS Σ} K Δ s E1 E2 E3 Φ e f :
f = (λ e, fill K e) (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E1; E2 {{ v, WP f (Val v) @ s; E2; E3 {{ Φ }} }})%I
envs_entails Δ (WP fill K e @ s; E1; E3 {{ Φ }}).
Proof. rewrite envs_entails_unseal=> -> ->. by apply: wp_bind. Qed.
(* don't change masks for bound expression *)
Lemma tac_wp_bind_nomask `{!heapGS Σ} K Δ s E1 E2 Φ e f :
f = (λ e, fill K e) (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E1; E1 {{ v, WP f (Val v) @ s; E1; E2 {{ Φ }} }})%I
envs_entails Δ (WP fill K e @ s; E1; E2 {{ Φ }}).
Proof. rewrite envs_entails_unseal=> -> ->. by apply: wp_bind. Qed.
Ltac wp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_wp_bind_nomask K); [simpl; reflexivity|reduction.pm_prettify]
end.
Tactic Notation "wp_bind" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K)
| fail 1 "wp_bind: cannot find" efoc "in" e ]
| _ => fail "wp_bind: not a 'wp'"
end.
Ltac wp_bind_core' K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_wp_bind K); [simpl; reflexivity|reduction.pm_prettify]
end.
Tactic Notation "wp_bind'" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core' K)
| fail 1 "wp_bind: cannot find" efoc "in" e ]
| _ => fail "wp_bind: not a 'wp'"
end.
(** Heap tactics *)
Section heap.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
Implicit Types Δ : envs (uPredI (iResUR Σ)).
Implicit Types v : val.
Implicit Types z : Z.
Lemma wand_apply' (P R Q : iProp Σ) :
(P R)
(R - Q)
P Q.
Proof.
intros Ha Hb. iIntros "HP". iApply Hb. iApply Ha. done.
Qed.
Lemma tac_wp_allocN Δ Δ' s E1 E2 j K v n Φ :
(0 < n)%Z
MaybeIntoLaterNEnvs 1 Δ Δ'
( l,
match envs_app false (Esnoc Enil j (array l (DfracOwn 1) (replicate (Z.to_nat n) v))) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ LitV $ LitLoc l) @ s; E1; E2 {{ Φ }})
| None => False
end)
envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E1; E2 {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ? ? HΔ.
rewrite -wp_bind. eapply wand_apply'; last exact: wp_allocN.
rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite right_id wand_elim_r.
Qed.
Lemma tac_wp_alloc Δ Δ' s E1 E2 j K v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ'
( l,
match envs_app false (Esnoc Enil j (l v)) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ LitV l) @ s; E1; E2 {{ Φ }})
| None => False
end)
envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E1; E2 {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ? HΔ.
rewrite -wp_bind. eapply wand_apply'; last exact: wp_alloc.
rewrite into_laterN_env_sound; apply later_mono, forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite right_id wand_elim_r.
Qed.
Lemma tac_wp_free Δ Δ' s E1 E2 i K l v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (false, l v)%I
(let Δ'' := envs_delete false i false Δ' in
envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E1; E2 {{ Φ }}))
envs_entails Δ (WP fill K (Free (LitV l)) @ s; E1; E2 {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ? Hlk Hfin.
rewrite -wp_bind. eapply wand_apply; first apply wand_entails, wp_free.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
rewrite -Hfin wand_elim_r (envs_lookup_sound' _ _ _ _ _ Hlk).
by apply later_mono, sep_mono_r.
Qed.
Lemma tac_wp_load Δ Δ' s E1 E2 i K b l q v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (b, l {q} v)%I
envs_entails Δ' (WP fill K (Val v) @ s; E1; E2 {{ Φ }})
envs_entails Δ (WP fill K (Load (LitV l)) @ s; E1; E2 {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ?? Hi.
rewrite -wp_bind. eapply wand_apply; first apply wand_entails, wp_load.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
apply later_mono.
destruct b; simpl.
* iIntros "[#$ He]". iIntros "_". iApply Hi. iApply "He". iFrame "#".
* by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_store Δ Δ' s E1 E2 i K l v v' Φ :
MaybeIntoLaterNEnvs 1 Δ Δ'
envs_lookup i Δ' = Some (false, l v)%I
match envs_simple_replace i false (Esnoc Enil i (l v')) Δ' with
| Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E1; E2 {{ Φ }})
| None => False
end
envs_entails Δ (WP fill K (Store (LitV l) (Val v')) @ s; E1; E2 {{ Φ }}).
Proof.
rewrite envs_entails_unseal=> ???.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply; first apply wand_entails, wp_store.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
End heap.
(** The tactic [wp_apply_core lem tac_suc tac_fail] evaluates [lem] to a
hypothesis [H] that can be applied, and then runs [wp_bind_core K; tac_suc H]
for every possible evaluation context [K].
- The tactic [tac_suc] should do [iApplyHyp H] to actually apply the hypothesis,
but can perform other operations in addition (see [wp_apply] and [awp_apply]
below).
- The tactic [tac_fail cont] is called when [tac_suc H] fails for all evaluation
contexts [K], and can perform further operations before invoking [cont] to
try again.
TC resolution of [lem] premises happens *after* [tac_suc H] got executed. *)
Ltac wp_apply_core lem tac_suc tac_fail := first
[iPoseProofCore lem as false (fun H =>
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
reshape_expr e ltac:(fun K e' =>
wp_bind_core K; tac_suc H)
| _ => fail 1 "wp_apply: not a 'wp'"
end)
|tac_fail ltac:(fun _ => wp_apply_core lem tac_suc tac_fail)
|let P := type of lem in
fail "wp_apply: cannot apply" lem ":" P ].
Tactic Notation "wp_apply" open_constr(lem) :=
wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl)
ltac:(fun cont => fail).
Tactic Notation "wp_smart_apply" open_constr(lem) :=
wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl)
ltac:(fun cont => wp_pure _; []; cont ()).
Tactic Notation "wp_alloc" ident(l) "as" constr(H) :=
let Htmp := iFresh in
let finish _ :=
first [intros l | fail 1 "wp_alloc:" l "not fresh"];
pm_reduce;
lazymatch goal with
| |- False => fail 1 "wp_alloc:" H "not fresh"
| _ => iDestructHyp Htmp as H; wp_finish
end in
wp_pures;
(** The code first tries to use allocation lemma for a single reference,
ie, [tac_wp_alloc] (respectively, [tac_twp_alloc]).
If that fails, it tries to use the lemma [tac_wp_allocN]
(respectively, [tac_twp_allocN]) for allocating an array.
Notice that we could have used the array allocation lemma also for single
references. However, that would produce the resource l [v] instead of
l v for single references. These are logically equivalent assertions
but are not equal. *)
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
let process_single _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc _ _ _ _ _ Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[tc_solve
|finish ()]
in
let process_array _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_allocN _ _ _ _ _ Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[idtac|tc_solve
|finish ()]
in (process_single ()) || (process_array ())
| _ => fail "wp_alloc: not a 'wp'"
end.
Tactic Notation "wp_alloc" ident(l) :=
wp_alloc l as "?".
Tactic Notation "wp_free" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_free _ _ _ _ _ _ K))
|fail 1 "wp_free: cannot find 'Free' in" e];
[tc_solve
|solve_mapsto ()
|pm_reduce; wp_finish]
| _ => fail "wp_free: not a 'wp'"
end.
Tactic Notation "wp_load" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_load: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ _ K))
|fail 1 "wp_load: cannot find 'Load' in" e];
[tc_solve
|solve_mapsto ()
|wp_finish]
| _ => fail "wp_load: not a 'wp'"
end.
Tactic Notation "wp_store" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l {_} _)%I) => l end in
iAssumptionCore || fail "wp_store: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E1 ?E2 ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_store _ _ _ _ _ _ K))
|fail 1 "wp_store: cannot find 'Store' in" e];
[tc_solve
|solve_mapsto ()
|pm_reduce; first [wp_seq|wp_finish]]
| _ => fail "wp_store: not a 'wp'"
end.