You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/program_logics/hoare_lib.v

726 lines
19 KiB

From iris.prelude Require Import options.
From iris.proofmode Require Import tactics.
From iris.heap_lang Require Import lang notation.
From iris.base_logic Require Export invariants.
From semantics.pl.heap_lang Require Export primitive_laws_nolater.
From semantics.pl.heap_lang Require Import adequacy proofmode.
Module hoare.
(* We make "ghost_state" an axiom for now to simplify the Coq development.
In the future, we will quantify over it. *)
Axiom ghost_state: heapGS heapΣ.
#[export] Existing Instance ghost_state.
(* the type of preconditions and postconditions *)
Notation iProp := (iProp heapΣ).
Implicit Types
(P Q R: iProp)
(φ ψ: Prop)
(e: expr)
(v: val).
Lemma ent_equiv P Q :
(P Q) (P Q) (Q P).
Proof. apply bi.equiv_entails. Qed.
(* Rules for entailment *)
Lemma ent_refl P:
P P.
Proof. eauto. Qed.
Lemma ent_trans P Q R:
(P Q) (Q R) (P R).
Proof. by intros ->. Qed.
(* NOTE: True = ⌜True⌝ *)
(* NOTE: False = ⌜False⌝ *)
Lemma ent_prove_pure P φ:
φ P φ.
Proof. eauto. Qed.
Lemma ent_assume_pure P Q φ:
(P φ)
(φ P Q)
P Q.
Proof.
iIntros (Hent Hpost) "P". iPoseProof (Hent with "P") as "%".
by iApply Hpost.
Qed.
Lemma ent_and_elim_r P Q :
P Q Q.
Proof.
iIntros "[_ $]".
Qed.
Lemma ent_and_elim_l P Q :
P Q P.
Proof.
iIntros "[$ _ ]".
Qed.
Lemma ent_and_intro P Q R :
(P Q)
(P R)
P Q R.
Proof.
iIntros (HQ HR) "HP". iSplit.
+ by iApply HQ.
+ by iApply HR.
Qed.
Lemma ent_or_introl P Q :
P P Q.
Proof. eauto. Qed.
Lemma ent_or_intror P Q :
Q P Q.
Proof. eauto. Qed.
Lemma ent_or_elim P Q R :
(P R)
(Q R)
P Q R.
Proof.
iIntros (HP HQ) "[HP | HQ]"; [by iApply HP | by iApply HQ].
Qed.
Lemma ent_all_intro {X} P Φ :
( x : X, P Φ x)
P x : X, Φ x.
Proof.
iIntros (Hx) "HP". iIntros(x).
by iApply Hx.
Qed.
Lemma ent_all_elim {X} (x : X) (Φ : _ iProp) :
( x, Φ x) Φ x.
Proof. eauto. Qed.
Lemma ent_exist_intro {X} (x : X) P Φ :
(P Φ x)
P x, Φ x.
Proof.
iIntros (HP) "HP". iExists x. by iApply HP.
Qed.
Lemma ent_exist_elim {X} Φ Q :
( x : X, (Φ x Q))
( x, Φ x) Q.
Proof.
iIntros (HQ) "(%x & Hx)". by iApply HQ.
Qed.
(** Separating conjunction rules *)
Lemma ent_sep_comm P Q:
P Q Q P.
Proof. iSplit; iIntros "[$ $]". Qed.
Lemma ent_sep_assoc P1 P2 P3:
P1 (P2 P3) (P1 P2) P3.
Proof.
iSplit.
- iIntros "[$ [$ $]]".
- iIntros "[[$ $] $]".
Qed.
Lemma ent_sep_split P P' Q Q':
(P Q) (P' Q') (P P') Q Q'.
Proof.
by intros -> ->.
Qed.
Lemma ent_sep_true P :
P True P.
Proof.
iIntros "$".
Qed.
Lemma ent_sep_weaken P Q:
P Q P.
Proof.
iIntros "[$ _]".
Qed.
Lemma ent_pointsto_sep l v w :
l v l w False.
Proof.
iIntros "[Ha Hb]".
iPoseProof (mapsto_ne with "Ha Hb") as "%Hneq".
done.
Qed.
Lemma ent_exists_sep {X} (Φ : X iProp) P :
( x : X, Φ x) P ( x : X, Φ x P).
Proof.
iIntros "((%x & Hx) & Hp)". eauto with iFrame.
Qed.
(** Magic wand rules *)
Lemma ent_wand_intro P Q R :
(P Q R)
(P Q - R).
Proof.
iIntros (Hr) "HP HQ". iApply Hr. iFrame.
Qed.
Lemma ent_wand_elim P Q R :
(P Q - R)
P Q R.
Proof.
iIntros (Hr) "[HP HQ]". iApply (Hr with "HP HQ").
Qed.
(** Hoare rules *)
Implicit Types
(Φ Ψ: val iProp).
Definition hoare P (e: expr) Φ := P WP e {{ Φ }}.
Global Notation "{{ P } } e {{ Φ } }" := (hoare P%I e%E Φ%I)
(at level 20, P, e, Φ at level 200,
format "{{ P } } e {{ Φ } }") : stdpp_scope.
Global Notation "{{ P } } e {{ v , Q } }" := (hoare P%I e%E (λ v, Q)%I)
(at level 20, P, e, Q at level 200,
format "{{ P } } e {{ v , Q } }") : stdpp_scope.
(* Rules for Hoare triples *)
Lemma hoare_value v Φ:
{{ Φ v }} v {{ Φ }}.
Proof.
iIntros "H". by iApply wp_value.
Qed.
Lemma hoare_con P Q Φ Ψ e:
(P Q)
( v, Ψ v Φ v)
{{ Q }} e {{ Ψ }}
{{ P }} e {{ Φ }}.
Proof.
iIntros (Hpre Hpost Hhoare) "P".
iApply wp_mono; eauto.
iApply Hhoare. by iApply Hpre.
Qed.
Lemma hoare_bind K P Φ Ψ e:
{{ P }} e {{ Ψ }}
( v, {{ Ψ v }} fill K (Val v) {{ Φ }})
{{ P }} (fill K e) {{ Φ }}.
Proof.
iIntros (Hexpr Hctx) "P".
iApply wp_bind'.
iApply wp_mono; eauto.
by iApply Hexpr.
Qed.
Lemma hoare_pure P φ Φ e:
(P φ)
(φ {{ P }} e {{ Φ }})
{{ P }} e {{ Φ }}.
Proof.
intros Hent Hhoare.
iIntros "P". iPoseProof (Hent with "P") as "%".
by iApply Hhoare.
Qed.
Lemma hoare_exist_pre {X} (Φ : X _) Ψ e :
( x : X, {{ Φ x }} e {{ Ψ }})
{{ x : X, Φ x }} e {{ Ψ }}.
Proof.
iIntros (Hs) "(%x & Hx)". by iApply Hs.
Qed.
Lemma hoare_pure_step P Ψ e1 e2 :
pure_step e1 e2
{{ P }} e2 {{ Ψ }}
{{ P }} e1 {{ Ψ }}.
Proof.
iIntros (Hpure He2) "HP".
iApply (lifting.wp_pure_step_later _ _ _ _ _ True).
- intros _. econstructor 2; [done | econstructor].
- done.
- iNext. iApply He2. done.
Qed.
Lemma hoare_pure_steps P Ψ e1 e2 :
rtc pure_step e1 e2
{{ P }} e2 {{ Ψ }}
{{ P }} e1 {{ Ψ }}.
Proof.
induction 1; eauto using hoare_pure_step.
Qed.
(** Pure step rules *)
Lemma PureExec_1_equiv e1 e2 :
( ϕ, ϕ PureExec ϕ 1 e1 e2)
pure_step e1 e2.
Proof.
split.
- intros (ϕ & H & Hp). by specialize (Hp H) as ?%nsteps_once_inv.
- intros Hp. exists True. split; first done.
intros _. econstructor; first done. constructor.
Qed.
Lemma PureExec_1_elim (ϕ : Prop) e1 e2 :
ϕ PureExec ϕ 1 e1 e2
pure_step e1 e2.
Proof.
intros H Hp. apply PureExec_1_equiv. eauto.
Qed.
Lemma pure_step_fill K (e1 e2: expr):
pure_step e1 e2 pure_step (fill K e1) (fill K e2).
Proof.
intros Hp. apply PureExec_1_equiv.
exists True. split; first done.
apply pure_exec_ctx; first apply _.
intros _. apply nsteps_once. done.
Qed.
Lemma rtc_pure_step_fill K (e1 e2: expr):
rtc pure_step e1 e2 rtc pure_step (fill K e1) (fill K e2).
Proof.
induction 1; first reflexivity.
econstructor; last done. by eapply pure_step_fill.
Qed.
Lemma pure_step_add (n m : Z) :
pure_step (#n + #m) (#(n + m)).
Proof.
eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_sub (n m : Z) :
pure_step (#n - #m) (#(n - m)).
Proof.
eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_mul (n m : Z) :
pure_step (#n * #m) (#(n * m)).
Proof.
eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_quot (n m : Z) :
m 0 pure_step (#n `quot` #m) (#(Z.quot n m)).
Proof.
intros _. eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_eq (n m : Z) :
n = m pure_step (#n = #m) #true.
Proof.
intros. eapply PureExec_1_elim; last apply _.
unfold bin_op_eval. simpl.
rewrite bool_decide_eq_true_2; subst; done.
Qed.
Lemma pure_step_neq (n m : Z) :
n m pure_step (#n = #m) #false.
Proof.
intros. eapply PureExec_1_elim; last apply _.
unfold bin_op_eval. simpl.
rewrite bool_decide_eq_false_2; first done.
intros [= Heq]; done.
Qed.
Lemma pure_step_beta f x e v :
pure_step ((rec: f x := e)%V v) (subst' x v (subst' f (rec: f x := e) e)).
Proof.
eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_if_true e1 e2 :
pure_step (if: #true then e1 else e2) e1.
Proof.
eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_if_false e1 e2 :
pure_step (if: #false then e1 else e2) e2.
Proof.
eapply PureExec_1_elim; last apply _. done.
Qed.
Lemma pure_step_match_injl v x1 x2 e1 e2 :
pure_step (match: InjLV v with InjL x1 => e1 | InjR x2 => e2 end) ((λ: x1, e1) v).
Proof.
by eapply PureExec_1_elim; last apply _.
Qed.
Lemma pure_step_match_injr v x1 x2 e1 e2 :
pure_step (match: InjRV v with InjL x1 => e1 | InjR x2 => e2 end) ((λ: x2, e2) v).
Proof.
by eapply PureExec_1_elim; last apply _.
Qed.
Lemma pure_step_fst v1 v2 :
pure_step (Fst (v1, v2)%V) v1.
Proof.
by eapply PureExec_1_elim; last apply _.
Qed.
Lemma pure_step_snd v1 v2 :
pure_step (Snd (v1, v2)%V) v2.
Proof.
by eapply PureExec_1_elim; last apply _.
Qed.
(** In our Coq formalization, a bit of an additional effort arises due to the handling of values:
values are always represented using the [Val] constructor, and fully reduced expressions take an additional
step of computation to get to a [Val].
See for instance the constructors [PairS], [InjLS], [InjRS].
Therefore, we need an additional rule, [pure_step_val].
*)
Lemma pure_step_val_fun f x e :
rtc pure_step (rec: f x := e)%E (rec: f x := e)%V.
Proof.
eapply rtc_nsteps. exists 1. eapply pure_exec. done.
Qed.
Lemma pure_step_val_pair e1 e2 v1 v2 :
rtc pure_step e1 v1
rtc pure_step e2 v2
rtc pure_step (e1, e2)%E (v1, v2)%V.
Proof.
etransitivity; first etransitivity.
+ by eapply rtc_pure_step_fill with (K := [PairRCtx _]).
+ by eapply rtc_pure_step_fill with (K := [PairLCtx _]).
+ simpl. eapply rtc_nsteps. exists 1. eapply pure_exec. done.
Qed.
Lemma pure_step_val_injl e1 v1 :
rtc pure_step e1 v1
rtc pure_step (InjL e1) (InjLV v1).
Proof.
etransitivity.
+ by eapply rtc_pure_step_fill with (K := [InjLCtx]).
+ simpl. eapply rtc_nsteps. exists 1. eapply pure_exec. done.
Qed.
Lemma pure_step_val_injr e1 v1 :
rtc pure_step e1 v1
rtc pure_step (InjR e1) (InjRV v1).
Proof.
etransitivity.
+ by eapply rtc_pure_step_fill with (K := [InjRCtx]).
+ simpl. eapply rtc_nsteps. exists 1. eapply pure_exec. done.
Qed.
Local Hint Resolve pure_step_val_fun pure_step_val_pair pure_step_val_injl pure_step_val_injr : core.
(** For convenience: a lemma to cover all of these cases, with a precondition that
can be easily solved by eatuto *)
Inductive expr_is_val : expr val Prop :=
| expr_is_val_base v:
expr_is_val (Val v) v
| expr_is_val_fun f x e:
expr_is_val (rec: f x := e)%E (rec: f x := e)%V
| expr_is_val_pair e1 e2 v1 v2:
expr_is_val e1 v1
expr_is_val e2 v2
expr_is_val (e1, e2)%E (v1, v2)%V
| expr_is_val_inj_l e v:
expr_is_val e v
expr_is_val (InjL e)%E (InjLV v)%V
| expr_is_val_inj_r e v:
expr_is_val e v
expr_is_val (InjR e)%E (InjRV v)%V.
#[export]
Hint Constructors expr_is_val : core.
Lemma expr_is_val_of_val v :
expr_is_val (of_val v) v.
Proof.
destruct v; simpl; constructor.
Qed.
#[export]
Hint Resolve expr_is_val_of_val : core.
Lemma pure_step_val e v:
expr_is_val e v
rtc pure_step e v.
Proof.
intros Hexpr. induction Hexpr; eauto. econstructor.
Qed.
Lemma hoare_new v :
{{ True }} ref v {{ w, l : loc, w = #l l v }}.
Proof.
iIntros "_". wp_alloc l as "Hl". iApply wp_value. eauto with iFrame.
Qed.
Lemma hoare_load l v:
{{ l v }} ! #l {{ w, w = v l v }}.
Proof.
iIntros "Hl". wp_load. iApply wp_value. iFrame. done.
Qed.
Lemma hoare_store l (v w: val):
{{ l v }} #l <- w {{ _, l w }}.
Proof.
iIntros "Hl". wp_store. iApply wp_value. iFrame.
Qed.
Lemma hoare_frame P F Φ e:
{{ P }} e {{ Φ }}
{{ P F }} e {{ v, Φ v F }}.
Proof.
iIntros (Hhoare) "[P $]". by iApply Hhoare.
Qed.
(* Prevent printing of magic wands *)
Notation "P - Q" := (bi_entails P Q) (only parsing) : stdpp_scope.
(** Weakest precondition rules *)
Lemma ent_wp_value Φ v :
Φ v WP of_val v {{ w, Φ w }}.
Proof.
iIntros "Hv". by iApply wp_value.
Qed.
Lemma ent_wp_wand' Φ Ψ e :
( v, Φ v - Ψ v) - WP e {{ Φ }} - WP e {{ Ψ }}.
Proof.
iIntros "Hp Hwp". iApply (wp_wand with "Hwp Hp").
Qed.
Lemma ent_wp_wand Φ Ψ e :
( v, Φ v - Ψ v) WP e {{ Φ }} WP e {{ Ψ }}.
Proof.
iIntros "[Hp Hwp]". iApply (wp_wand with "Hwp Hp").
Qed.
Lemma ent_wp_bind e K Φ :
WP e {{ v, WP fill K (Val v) {{ Φ }} }} WP fill K e {{ Φ }}.
Proof.
iApply wp_bind.
Qed.
Lemma ent_wp_pure_step e e' Φ :
pure_step e e'
WP e' {{ Φ }} WP e {{ Φ }}.
Proof.
iIntros (Hpure) "Hwp". iApply (lifting.wp_pure_step_later _ _ _ _ _ True 1); last iApply "Hwp"; last done.
intros _. apply nsteps_once. apply Hpure.
Qed.
Lemma ent_wp_new v Φ :
( l : loc, l v - Φ #l) WP ref (Val v) {{ Φ }}.
Proof.
iIntros "Hs". wp_alloc l as "Hl". wp_value_head. by iApply "Hs".
Qed.
Lemma ent_wp_load l v Φ :
l v (l v - Φ v) WP !#l {{ Φ }}.
Proof.
iIntros "(Hl & Hp)". wp_load. wp_value_head. by iApply "Hp".
Qed.
Lemma ent_wp_store l v w Φ :
l w (l v - Φ #()) WP #l <- Val v {{ Φ }}.
Proof.
iIntros "(Hl & Hp)". wp_store. wp_value_head. by iApply "Hp".
Qed.
(** Persistency *)
Lemma ent_pers_dup P :
P ( P) ( P).
Proof.
iIntros "#HP". eauto.
Qed.
Lemma ent_pers_elim P :
P P.
Proof.
iIntros "#$".
Qed.
Lemma ent_pers_mono P Q :
(P Q)
P Q.
Proof.
iIntros (HPQ) "#HP !>". by iApply HPQ.
Qed.
Lemma ent_pers_pure (ϕ : Prop) :
ϕ ( ϕ : iProp).
Proof.
iIntros "#$".
Qed.
Lemma ent_pers_and_sep P Q :
( P) Q ( P) Q.
Proof.
iIntros "(#$ & $)".
Qed.
Lemma ent_pers_idemp P :
P P.
Proof.
iIntros "#$".
Qed.
Lemma ent_pers_all {X} (Φ : X iProp) :
( x : X, Φ x) x : X, Φ x.
Proof.
iIntros "#Hx" (x). iApply "Hx".
Qed.
Lemma ent_pers_exists {X} (Φ : X iProp) :
( x : X, Φ x) x : X, Φ x.
Proof.
iIntros "(%x & #Hx)". iExists x. done.
Qed.
(** Invariants *)
Implicit Type
(F : iProp)
(N : namespace)
(E : coPset)
.
Lemma ent_inv_pers F N :
inv N F inv N F.
Proof.
iIntros "#$".
Qed.
Lemma ent_inv_alloc F P N E e Φ :
(P inv N F WP e @ E {{ Φ }})
(P F WP e @ E {{ Φ }}).
Proof.
iIntros (Ha) "[HP HF]".
iMod (inv_alloc N with "HF") as "#Hinv".
iApply Ha. iFrame "Hinv ".
Qed.
Lemma inv_alloc N F E e Φ :
F -
(inv N F - WP e @ E {{ Φ }}) -
WP e @ E {{ Φ }}.
Proof.
iIntros "HF Hs".
iMod (inv_alloc N with "HF") as "#Hinv".
by iApply "Hs".
Qed.
(** We require a sidecondition here, namely that [F] is "timeless". All propositions we have seen up to now are in fact timeless.
We will see propositions that do not satisfy this requirement and which need a stronger rule for invariants soon.
*)
Lemma ent_inv_open `{!Timeless F} P N E e Φ :
(P F WP e @ (E N) {{ v, F Φ v }})
N E
(P inv N F WP e @ E {{ Φ }}).
Proof.
iIntros (Ha Hincl) "(HP & #Hinv)".
iMod (inv_acc_timeless with "Hinv") as "(HF & Hcl)"; first done.
iApply wp_fupd'. iApply wp_wand_r.
iSplitR "Hcl". { iApply Ha. iFrame. }
iIntros (v) "[HF Hphi]". iMod ("Hcl" with "HF"). done.
Qed.
Lemma inv_open `{!Timeless F} N E e Φ :
N E
inv N F -
(F - WP e @ (E N) {{ v, F Φ v }})%I -
WP e @ E {{ Φ }}.
Proof.
iIntros (Hincl) "#Hinv Hs".
iMod (inv_acc_timeless with "Hinv") as "(HF & Hcl)"; first done.
iApply wp_fupd'. iApply wp_wand_r.
iSplitR "Hcl". { iApply "Hs". iFrame. }
iIntros (v) "[HF Hphi]". iMod ("Hcl" with "HF"). done.
Qed.
(** Later *)
Lemma ent_later_intro P :
P P.
Proof.
iIntros "$".
Qed.
Lemma ent_later_mono P Q :
(P Q)
( P Q).
Proof.
iIntros (Hs) "HP!>". by iApply Hs.
Qed.
Lemma ent_löb P :
( P P)
True P.
Proof.
iIntros (Hs) "_".
iLöb as "IH". by iApply Hs.
Qed.
Lemma ent_later_sep P Q :
(P Q) ( P) ( Q).
Proof.
iSplit; iIntros "[$ $]".
Qed.
Lemma ent_later_exists `{Inhabited X} (Φ : X iProp) :
( ( x : X, Φ x)) x : X, Φ x.
Proof. apply bi.later_exist. Qed.
Lemma ent_later_all {X} (Φ : X iProp) :
( x : X, Φ x) x : X, Φ x.
Proof. apply bi.later_forall. Qed.
Lemma ent_later_pers P :
P P.
Proof.
iSplit; iIntros "#H !> !>"; done.
Qed.
Lemma ent_later_wp_pure_step e e' Φ :
pure_step e e'
WP e' {{ Φ }} WP e {{ Φ }}.
Proof.
iIntros (Hpure%PureExec_1_equiv) "Hwp".
destruct Hpure as (ϕ & Hphi & Hpure).
iApply (lifting.wp_pure_step_later _ _ _ _ _ _ 1); done.
Qed.
Lemma ent_later_wp_new v Φ :
( l : loc, l v - Φ #l) WP ref v {{ Φ }}.
Proof.
iIntros "Hp". wp_alloc l as "Hl". iApply wp_value. by iApply "Hp".
Qed.
Lemma ent_later_wp_load l v Φ :
l v (l v - Φ v) WP ! #l {{ Φ }}.
Proof.
iIntros "[Hl Hp]". wp_load. iApply wp_value. by iApply "Hp".
Qed.
Lemma ent_later_wp_store l v w Φ :
l v (l w - Φ #()) WP #l <- w {{ Φ }}.
Proof.
iIntros "[Hl Hp]". wp_store. iApply wp_value. by iApply "Hp".
Qed.
End hoare.
Module impred_invariants.
Import hoare.
Implicit Type
(F : iProp)
(N : namespace)
(E : coPset)
.
Lemma ent_inv_open P F N E e Φ :
(P F WP e @ (E N) {{ v, F Φ v }})
N E
(P inv N F WP e @ E {{ Φ }}).
Proof.
iIntros (Ha Hincl) "(HP & #Hinv)".
iMod (inv_acc with "Hinv") as "(HF & Hcl)"; first done.
iApply wp_fupd'. iApply wp_wand_r.
iSplitR "Hcl". { iApply Ha. iFrame. }
iIntros (v) "[HF Hphi]". iMod ("Hcl" with "HF"). done.
Qed.
Lemma inv_open N E F e Φ :
N E
inv N F -
( F - WP e @ (E N) {{ v, F Φ v }})%I -
WP e @ E {{ Φ }}.
Proof.
iIntros (Hincl) "#Hinv Hs".
iMod (inv_acc with "Hinv") as "(HF & Hcl)"; first done.
iApply wp_fupd'. iApply wp_wand_r.
iSplitR "Hcl". { iApply "Hs". iFrame. }
iIntros (v) "[HF Hphi]". iMod ("Hcl" with "HF"). done.
Qed.
End impred_invariants.