You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/type_systems/stlc/cbn_logrel.v

185 lines
5.1 KiB

From stdpp Require Import base relations.
From iris Require Import prelude.
From semantics.lib Require Import sets maps.
From semantics.ts.stlc Require Import lang notation types parallel_subst.
From Equations Require Import Equations.
Implicit Types
(Γ : typing_context)
(v : val)
(e : expr)
(A : type).
(** *** Big-Step Semantics for cbn *)
Inductive big_step : expr val Prop :=
| bs_lit (n : Z) :
big_step (LitInt n) (LitIntV n)
| bs_lam (x : binder) (e : expr) :
big_step (Lam x e) (LamV x e)
| bs_add e1 e2 (z1 z2 : Z) :
big_step e1 (LitIntV z1)
big_step e2 (LitIntV z2)
big_step (Plus e1 e2) (LitIntV (z1 + z2))%Z
| bs_app e1 e2 x e v2 v :
big_step e1 (@LamV x e)
big_step (subst' x e2 e) v
big_step (App e1 e2) v
.
#[export] Hint Constructors big_step : core.
Lemma big_step_vals (v: val): big_step (of_val v) v.
Proof.
induction v; econstructor.
Qed.
Lemma big_step_inv_vals (v w: val): big_step (of_val v) w v = w.
Proof.
destruct v; inversion 1; eauto.
Qed.
(* *** Definition of the logical relation. *)
(* We reuse most of these definitions. *)
Inductive val_or_expr : Type :=
| inj_val : val val_or_expr
| inj_expr : expr val_or_expr.
(* Note that we're using a slightly modified termination argument here. *)
Equations type_size (t : type) : nat :=
type_size Int := 1;
type_size (Fun A B) := type_size A + type_size B + 2.
Equations mut_measure (ve : val_or_expr) (t : type) : nat :=
mut_measure (inj_val _) t := type_size t;
mut_measure (inj_expr _) t := 1 + type_size t.
Equations type_interp (ve : val_or_expr) (t : type) : Prop by wf (mut_measure ve t) := {
type_interp (inj_val v) Int =>
z : Z, v = z ;
type_interp (inj_val v) (A B) =>
x e, v = @LamV x e closed (x :b: nil) e
e',
type_interp (inj_expr e') A
type_interp (inj_expr (subst' x e' e)) B;
type_interp (inj_expr e) t =>
(* we now need to explicitly require that expressions here are closed so
that we can apply them to lambdas directly. *)
v, big_step e v closed [] e type_interp (inj_val v) t
}.
Next Obligation.
repeat simp mut_measure; simp type_size; lia.
Qed.
Next Obligation.
simp mut_measure. simp type_size.
destruct A; repeat simp mut_measure; repeat simp type_size; lia.
Qed.
(* We derive the expression/value relation. *)
Notation sem_val_rel t v := (type_interp (inj_val v) t).
Notation sem_expr_rel t e := (type_interp (inj_expr e) t).
Notation 𝒱 t v := (sem_val_rel t v).
Notation t v := (sem_expr_rel t v).
(* *** Semantic typing of contexts *)
Implicit Types
(θ : gmap string expr).
Inductive sem_context_rel : typing_context (gmap string expr) Prop :=
| sem_context_rel_empty : sem_context_rel
(* contexts may now contain arbitrary (semantically well-typed) expressions
as opposed to just values. *)
| sem_context_rel_insert Γ θ e x A :
A e
sem_context_rel Γ θ
sem_context_rel (<[x := A]> Γ) (<[x := e]> θ).
Notation 𝒢 := sem_context_rel.
(* The semantic typing judgement. Note that we require e to be closed under Γ. *)
Definition sem_typed Γ e A :=
closed (elements (dom Γ)) e
θ, 𝒢 Γ θ A (subst_map θ e).
Notation "Γ ⊨ e : A" := (sem_typed Γ e A) (at level 74, e, A at next level).
(* We start by proving a couple of helper lemmas that will be useful later. *)
Lemma sem_expr_rel_of_val A v:
A v 𝒱 A v.
Proof.
simp type_interp.
intros (v' & ->%big_step_inv_vals & Hv').
apply Hv'.
Qed.
Lemma val_rel_closed v A:
𝒱 A v closed [] v.
Proof.
induction A; simp type_interp.
- intros [z ->]. done.
- intros (x & e & -> & Hcl & _). done.
Qed.
Lemma val_inclusion A v:
𝒱 A v A v.
Proof.
intros H. simp type_interp. eauto using big_step_vals, val_rel_closed.
Qed.
Lemma expr_rel_closed e A :
A e closed [] e.
Proof.
simp type_interp. intros (v & ? & ? & ?). done.
Qed.
Lemma sem_context_rel_closed Γ θ:
𝒢 Γ θ subst_closed [] θ.
Proof.
induction 1; rewrite /subst_closed.
- naive_solver.
- intros y e'. rewrite lookup_insert_Some.
intros [[-> <-]|[Hne Hlook]].
+ by eapply expr_rel_closed.
+ eapply IHsem_context_rel; last done.
Qed.
(* This is essentially an inversion lemma for 𝒢 *)
Lemma sem_context_rel_exprs Γ θ x A :
sem_context_rel Γ θ
Γ !! x = Some A
e, θ !! x = Some e A e.
Proof.
induction 1 as [|Γ θ e y B Hvals Hctx IH].
- naive_solver.
- rewrite lookup_insert_Some. intros [[-> ->]|[Hne Hlook]].
+ eexists; first by rewrite lookup_insert.
+ eapply IH in Hlook as (e' & Hlook & He).
eexists; split; first by rewrite lookup_insert_ne.
done.
Qed.
Lemma sem_context_rel_dom Γ θ :
𝒢 Γ θ dom Γ = dom θ.
Proof.
induction 1.
- by rewrite !dom_empty.
- rewrite !dom_insert. congruence.
Qed.
Lemma termination e A :
( e : A)%ty
v, big_step e v.
Proof.
(* You may want to add suitable intermediate lemmas, like we did for the cbv
logical relation as seen in the lecture. *)
(* TODO: exercise *)
Admitted.