You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/program_logics/heap_lang/primitive_laws_nolater.v

113 lines
3.3 KiB

11 months ago
From stdpp Require Import fin_maps.
From iris.proofmode Require Import proofmode.
From iris.bi.lib Require Import fractional.
From semantics.pl.heap_lang Require Export primitive_laws derived_laws.
From iris.base_logic.lib Require Export gen_heap gen_inv_heap.
From semantics.pl.program_logic Require Export sequential_wp.
From semantics.pl.program_logic Require Import ectx_lifting.
From iris.heap_lang Require Export class_instances.
From iris.heap_lang Require Import tactics notation.
From iris.prelude Require Import options.
Section lifting.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ Ψ : val iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.
Implicit Types v : val.
Implicit Types l : loc.
(** Heap *)
Lemma wp_allocN_seq s E v n Φ :
(0 < n)%Z
( l, ([ list] i seq 0 (Z.to_nat n), (l + (i : nat)) v) - Φ (LitV $ LitLoc l)) -
WP AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E; E {{ Φ }}.
Proof.
iIntros (Hn) "". iApply wp_allocN_seq; done.
Qed.
Lemma wp_alloc s E v Φ :
( l, l v - Φ (LitV $ LitLoc l)) -
WP Alloc (Val v) @ s; E; E {{ Φ }}.
Proof.
iIntros "". by iApply wp_alloc.
Qed.
Lemma wp_free s E l v Φ :
l v -
(Φ (LitV LitUnit)) -
WP Free (Val $ LitV $ LitLoc l) @ s; E; E {{ Φ }}.
Proof.
iIntros "Hl HΦ". iApply (wp_free with "Hl HΦ").
Qed.
Lemma wp_load s E l dq v Φ :
l {dq} v -
(l {dq} v - Φ v) -
WP Load (Val $ LitV $ LitLoc l) @ s; E; E {{ Φ }}.
Proof.
iIntros "Hl HΦ". iApply (wp_load with "Hl HΦ").
Qed.
Lemma wp_store s E l v' v Φ :
l v' -
(l v - Φ (LitV LitUnit)) -
WP Store (Val $ LitV $ LitLoc l) (Val v) @ s; E; E {{ Φ }}.
Proof.
iIntros "Hl HΦ".
iApply (wp_store with "Hl HΦ").
Qed.
(*** Derived *)
Lemma wp_allocN s E v n Φ :
(0 < n)%Z
( l, l replicate (Z.to_nat n) v - Φ (LitV $ LitLoc l)) -
WP AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E; E {{ Φ }}.
Proof.
iIntros. by iApply wp_allocN.
Qed.
Lemma wp_allocN_vec s E v n Φ :
(0 < n)%Z
( l, l vreplicate (Z.to_nat n) v - Φ (#l)) -
WP AllocN #n v @ s ; E; E {{ Φ }}.
Proof.
iIntros. by iApply wp_allocN_vec.
Qed.
(** * Rules for accessing array elements *)
Lemma wp_load_offset s E l dq (off : nat) vs v Φ :
vs !! off = Some v
l {dq} vs -
(l {dq} vs - Φ v) -
WP ! #(l + off) @ s; E; E {{ Φ }}.
Proof.
iIntros (?) "Hl HΦ". by iApply (wp_load_offset with "Hl HΦ").
Qed.
Lemma wp_load_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) Φ :
l {dq} vs -
(l {dq} vs - Φ (vs !!! off)) -
WP ! #(l + off) @ s; E; E {{ Φ }}.
Proof. apply wp_load_offset. by apply vlookup_lookup. Qed.
Lemma wp_store_offset s E l (off : nat) vs v Φ :
is_Some (vs !! off)
l vs -
(l <[off:=v]> vs - Φ #()) -
WP #(l + off) <- v @ s; E; E {{ Φ }}.
Proof.
iIntros (?) "Hl HΦ". by iApply (wp_store_offset with "Hl HΦ").
Qed.
Lemma wp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v Φ :
l vs -
(l vinsert off v vs - Φ #()) -
WP #(l + off) <- v @ s; E; E {{ Φ }}.
Proof.
iIntros "Hl HΦ". by iApply (wp_store_offset_vec with "Hl HΦ").
Qed.
End lifting.