You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
48 lines
1.8 KiB
48 lines
1.8 KiB
1 year ago
|
From iris.prelude Require Import prelude options.
|
||
|
From Autosubst Require Export Autosubst.
|
||
|
|
||
|
|
||
|
(* [idss n sigma] alters the substitution [sigma] by
|
||
|
"prepending" binders [0..n), so that [#i] is substituted for binder [i].
|
||
|
After that, the binders from [sigma] follow.
|
||
|
*)
|
||
|
Definition idss `{Ids X} (n : nat) (sigma : var → X) (x : var) :=
|
||
|
if decide (x < n) then ids x else sigma (x - n).
|
||
|
Lemma idss_0 `{Ids X} (sigma : var → X) :
|
||
|
idss 0 sigma = sigma.
|
||
|
Proof.
|
||
|
f_ext. intros x; unfold idss. simpl.
|
||
|
replace (x - 0) with x by lia. done.
|
||
|
Qed.
|
||
|
Lemma up_idss `{Ids X} `{Rename X} (sigma : var → X) n :
|
||
|
(* this precondition holds for the instances we are interested in,
|
||
|
but is not a general law assumed by autosubst *)
|
||
|
(∀ x : var, rename (+1) (ids x) = ids (S x)) →
|
||
|
up (idss n sigma) = idss (S n) (sigma >>> rename (+1) ).
|
||
|
Proof.
|
||
|
intros Hren_law.
|
||
|
f_ext. intros x. destruct x as [ | x]; unfold idss; simpl; first done.
|
||
|
unfold up. simpl.
|
||
|
destruct (decide (x < n)).
|
||
|
- rewrite decide_True; last lia. apply Hren_law.
|
||
|
- rewrite decide_False; last lia. done.
|
||
|
Qed.
|
||
|
|
||
|
(* We will also need something like [idss] to shift variable renamings [var → var].
|
||
|
Instead of doing a separate definition like
|
||
|
[ Definition idsc (n : nat) (sigma : var → var) (x : var) := if decide (x < n) then x else sigma (x - n). ]
|
||
|
we declare suitable instances to use [idss] for variable renamings.
|
||
|
*)
|
||
|
#[global] Instance Ids_var : Ids var. exact id. Defined.
|
||
|
#[global] Instance Rename_var : Rename var. exact id. Defined.
|
||
|
|
||
|
(* a lemma for the nat instance *)
|
||
|
Lemma upren_idss sigma n :
|
||
|
upren (idss n sigma) = idss (S n) (sigma >>> S).
|
||
|
Proof.
|
||
|
f_ext. intros x. destruct x as [ | x]; unfold idss; simpl; first done.
|
||
|
destruct (decide (x < n)).
|
||
|
- rewrite decide_True; [done | lia ].
|
||
|
- rewrite decide_False; lia.
|
||
|
Qed.
|