You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
semantics-2023/theories/program_logics/heap_lang/derived_laws.v

173 lines
6.2 KiB

11 months ago
(** This file extends the HeapLang program logic with some derived laws (not
using the lifting lemmas) about arrays and prophecies.
For utility functions on arrays (e.g., freeing/copying an array), see
[heap_lang.lib.array]. *)
From stdpp Require Import fin_maps.
From iris.bi Require Import lib.fractional.
From iris.proofmode Require Import proofmode.
From iris.heap_lang Require Import tactics notation.
From semantics.pl.heap_lang Require Export primitive_laws.
From iris.prelude Require Import options.
(** The [array] connective is a version of [mapsto] that works
with lists of values. *)
Definition array `{!heapGS Σ} (l : loc) (dq : dfrac) (vs : list val) : iProp Σ :=
[ list] i v vs, (l + i) {dq} v.
(** FIXME: Refactor these notations using custom entries once Coq bug #13654
has been fixed. *)
Notation "l ↦∗{ dq } vs" := (array l dq vs)
(at level 20, format "l ↦∗{ dq } vs") : bi_scope.
Notation "l ↦∗□ vs" := (array l DfracDiscarded vs)
(at level 20, format "l ↦∗□ vs") : bi_scope.
Notation "l ↦∗{# q } vs" := (array l (DfracOwn q) vs)
(at level 20, format "l ↦∗{# q } vs") : bi_scope.
Notation "l ↦∗ vs" := (array l (DfracOwn 1) vs)
(at level 20, format "l ↦∗ vs") : bi_scope.
(** We have [FromSep] and [IntoSep] instances to split the fraction (via the
[AsFractional] instance below), but not for splitting the list, as that would
lead to overlapping instances. *)
Section lifting.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val iProp Σ.
Implicit Types σ : state.
Implicit Types v : val.
Implicit Types vs : list val.
Implicit Types l : loc.
Implicit Types sz off : nat.
Global Instance array_timeless l q vs : Timeless (array l q vs) := _.
Global Instance array_fractional l vs : Fractional (λ q, l {#q} vs)%I := _.
Global Instance array_as_fractional l q vs :
AsFractional (l {#q} vs) (λ q, l {#q} vs)%I q.
Proof. split; done || apply _. Qed.
Lemma array_nil l dq : l {dq} [] emp.
Proof. by rewrite /array. Qed.
Lemma array_singleton l dq v : l {dq} [v] l {dq} v.
Proof. by rewrite /array /= right_id Loc.add_0. Qed.
Lemma array_app l dq vs ws :
l {dq} (vs ++ ws) l {dq} vs (l + length vs) {dq} ws.
Proof.
rewrite /array big_sepL_app.
setoid_rewrite Nat2Z.inj_add.
by setoid_rewrite Loc.add_assoc.
Qed.
Lemma array_cons l dq v vs : l {dq} (v :: vs) l {dq} v (l + 1) {dq} vs.
Proof.
rewrite /array big_sepL_cons Loc.add_0.
setoid_rewrite Loc.add_assoc.
setoid_rewrite Nat2Z.inj_succ.
by setoid_rewrite Z.add_1_l.
Qed.
Global Instance array_cons_frame l dq v vs R Q :
Frame false R (l {dq} v (l + 1) {dq} vs) Q
Frame false R (l {dq} (v :: vs)) Q | 2.
Proof. by rewrite /Frame array_cons. Qed.
Lemma update_array l dq vs off v :
vs !! off = Some v
l {dq} vs - ((l + off) {dq} v v', (l + off) {dq} v' - l {dq} <[off:=v']>vs).
Proof.
iIntros (Hlookup) "Hl".
rewrite -[X in (l {_} X)%I](take_drop_middle _ off v); last done.
iDestruct (array_app with "Hl") as "[Hl1 Hl]".
iDestruct (array_cons with "Hl") as "[Hl2 Hl3]".
assert (off < length vs) as H by (apply lookup_lt_is_Some; by eexists).
rewrite take_length min_l; last by lia. iFrame "Hl2".
iIntros (w) "Hl2".
clear Hlookup. assert (<[off:=w]> vs !! off = Some w) as Hlookup.
{ apply list_lookup_insert. lia. }
rewrite -[in (l {_} <[off:=w]> vs)%I](take_drop_middle (<[off:=w]> vs) off w Hlookup).
iApply array_app. rewrite take_insert; last by lia. iFrame.
iApply array_cons. rewrite take_length min_l; last by lia. iFrame.
rewrite drop_insert_gt; last by lia. done.
Qed.
(** * Rules for allocation *)
Lemma mapsto_seq_array l dq v n :
([ list] i seq 0 n, (l + (i : nat)) {dq} v) -
l {dq} replicate n v.
Proof.
rewrite /array. iInduction n as [|n'] "IH" forall (l); simpl.
{ done. }
iIntros "[$ Hl]". rewrite -fmap_S_seq big_sepL_fmap.
setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
setoid_rewrite <-Loc.add_assoc. iApply "IH". done.
Qed.
Lemma wp_allocN s E v n Φ :
(0 < n)%Z
( l, l replicate (Z.to_nat n) v - Φ (LitV $ LitLoc l)) -
WP AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E; E {{ Φ }}.
Proof.
iIntros (Hzs) "". iApply wp_allocN_seq; [done..|].
iNext. iIntros (l) "Hlm". iApply "".
by iApply mapsto_seq_array.
Qed.
Lemma wp_allocN_vec s E v n Φ :
(0 < n)%Z
( l, l vreplicate (Z.to_nat n) v - Φ (#l)) -
WP AllocN #n v @ s ; E; E {{ Φ }}.
Proof.
iIntros (Hzs) "". iApply wp_allocN; [ lia | .. ].
iNext. iIntros (l) "Hl". iApply "". rewrite vec_to_list_replicate. iFrame.
Qed.
(** * Rules for accessing array elements *)
Lemma wp_load_offset s E l dq off vs v Φ :
vs !! off = Some v
l {dq} vs -
(l {dq} vs - Φ v) -
WP ! #(l + off) @ s; E; E {{ Φ }}.
Proof.
iIntros (Hlookup) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (wp_load with "Hl1"). iIntros "!> Hl1". iApply "".
iDestruct ("Hl2" $! v) as "Hl2". rewrite list_insert_id; last done.
iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_load_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) Φ :
l {dq} vs -
(l {dq} vs - Φ (vs !!! off)) -
WP ! #(l + off) @ s; E; E {{ Φ }}.
Proof. apply wp_load_offset. by apply vlookup_lookup. Qed.
Lemma wp_store_offset s E l off vs v Φ :
is_Some (vs !! off)
l vs -
(l <[off:=v]> vs - Φ #()) -
WP #(l + off) <- v @ s; E; E {{ Φ }}.
Proof.
iIntros ([w Hlookup]) "Hl HΦ".
iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
iApply (wp_store with "Hl1"). iIntros "!> Hl1".
iApply "". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v Φ :
l vs -
(l vinsert off v vs - Φ #()) -
WP #(l + off) <- v @ s; E; E {{ Φ }}.
Proof.
setoid_rewrite vec_to_list_insert. apply wp_store_offset.
eexists. by apply vlookup_lookup.
Qed.
End lifting.
#[global] Typeclasses Opaque array.