|
|
|
@ -0,0 +1,875 @@
|
|
|
|
|
From stdpp Require Import base relations.
|
|
|
|
|
From iris Require Import prelude.
|
|
|
|
|
From semantics.lib Require Import maps.
|
|
|
|
|
From semantics.ts.systemf Require Import lang notation.
|
|
|
|
|
From Autosubst Require Export Autosubst.
|
|
|
|
|
|
|
|
|
|
(** ** Syntactic typing *)
|
|
|
|
|
(** We use De Bruijn indices with the help of the Autosubst library. *)
|
|
|
|
|
Inductive type : Type :=
|
|
|
|
|
(** [var] is the type of variables of Autosubst -- it unfolds to [nat] *)
|
|
|
|
|
| TVar : var → type
|
|
|
|
|
| Int
|
|
|
|
|
| Bool
|
|
|
|
|
| Unit
|
|
|
|
|
(** The [{bind 1 of type}] tells Autosubst to put a De Bruijn binder here *)
|
|
|
|
|
| TForall : {bind 1 of type} → type
|
|
|
|
|
| TExists : {bind 1 of type} → type
|
|
|
|
|
| Fun (A B : type)
|
|
|
|
|
| Prod (A B : type)
|
|
|
|
|
| Sum (A B : type).
|
|
|
|
|
|
|
|
|
|
(** Autosubst instances.
|
|
|
|
|
This lets Autosubst do its magic and derive all the substitution functions, etc.
|
|
|
|
|
*)
|
|
|
|
|
#[export] Instance Ids_type : Ids type. derive. Defined.
|
|
|
|
|
#[export] Instance Rename_type : Rename type. derive. Defined.
|
|
|
|
|
#[export] Instance Subst_type : Subst type. derive. Defined.
|
|
|
|
|
#[export] Instance SubstLemmas_typer : SubstLemmas type. derive. Qed.
|
|
|
|
|
|
|
|
|
|
Definition typing_context := gmap string type.
|
|
|
|
|
Implicit Types
|
|
|
|
|
(Γ : typing_context)
|
|
|
|
|
(v : val)
|
|
|
|
|
(e : expr).
|
|
|
|
|
|
|
|
|
|
Declare Scope FType_scope.
|
|
|
|
|
Delimit Scope FType_scope with ty.
|
|
|
|
|
Bind Scope FType_scope with type.
|
|
|
|
|
Notation "# x" := (TVar x) : FType_scope.
|
|
|
|
|
Infix "→" := Fun : FType_scope.
|
|
|
|
|
Notation "(→)" := Fun (only parsing) : FType_scope.
|
|
|
|
|
Notation "∀: τ" :=
|
|
|
|
|
(TForall τ%ty)
|
|
|
|
|
(at level 100, τ at level 200) : FType_scope.
|
|
|
|
|
Notation "∃: τ" :=
|
|
|
|
|
(TExists τ%ty)
|
|
|
|
|
(at level 100, τ at level 200) : FType_scope.
|
|
|
|
|
Infix "×" := Prod (at level 70) : FType_scope.
|
|
|
|
|
Notation "(×)" := Prod (only parsing) : FType_scope.
|
|
|
|
|
Infix "+" := Sum : FType_scope.
|
|
|
|
|
Notation "(+)" := Sum (only parsing) : FType_scope.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(** Shift all the indices in the context by one,
|
|
|
|
|
used when inserting a new type interpretation in Δ. *)
|
|
|
|
|
(* [<$>] is notation for the [fmap] operation that maps the substitution over the whole map. *)
|
|
|
|
|
(* [ren] is Autosubst's renaming operation -- it renames all type variables according to the given function,
|
|
|
|
|
in this case [(+1)] to shift the variables up by 1. *)
|
|
|
|
|
Notation "⤉ Γ" := (Autosubst_Classes.subst (ren (+1)) <$> Γ) (at level 10, format "⤉ Γ").
|
|
|
|
|
|
|
|
|
|
Reserved Notation "'TY' n ; Γ ⊢ e : A" (at level 74, e, A at next level).
|
|
|
|
|
|
|
|
|
|
(** [type_wf n A] states that a type [A] has only free variables up to < [n].
|
|
|
|
|
(in other words, all variables occurring free are strictly bounded by [n]). *)
|
|
|
|
|
Inductive type_wf : nat → type → Prop :=
|
|
|
|
|
| type_wf_TVar m n:
|
|
|
|
|
m < n →
|
|
|
|
|
type_wf n (TVar m)
|
|
|
|
|
| type_wf_Int n: type_wf n Int
|
|
|
|
|
| type_wf_Bool n : type_wf n Bool
|
|
|
|
|
| type_wf_Unit n : type_wf n Unit
|
|
|
|
|
| type_wf_TForall n A :
|
|
|
|
|
type_wf (S n) A →
|
|
|
|
|
type_wf n (TForall A)
|
|
|
|
|
| type_wf_TExists n A :
|
|
|
|
|
type_wf (S n) A →
|
|
|
|
|
type_wf n (TExists A)
|
|
|
|
|
| type_wf_Fun n A B:
|
|
|
|
|
type_wf n A →
|
|
|
|
|
type_wf n B →
|
|
|
|
|
type_wf n (Fun A B)
|
|
|
|
|
| type_wf_Prod n A B :
|
|
|
|
|
type_wf n A →
|
|
|
|
|
type_wf n B →
|
|
|
|
|
type_wf n (Prod A B)
|
|
|
|
|
| type_wf_Sum n A B :
|
|
|
|
|
type_wf n A →
|
|
|
|
|
type_wf n B →
|
|
|
|
|
type_wf n (Sum A B)
|
|
|
|
|
.
|
|
|
|
|
#[export] Hint Constructors type_wf : core.
|
|
|
|
|
|
|
|
|
|
Inductive bin_op_typed : bin_op → type → type → type → Prop :=
|
|
|
|
|
| plus_op_typed : bin_op_typed PlusOp Int Int Int
|
|
|
|
|
| minus_op_typed : bin_op_typed MinusOp Int Int Int
|
|
|
|
|
| mul_op_typed : bin_op_typed MultOp Int Int Int
|
|
|
|
|
| lt_op_typed : bin_op_typed LtOp Int Int Bool
|
|
|
|
|
| le_op_typed : bin_op_typed LeOp Int Int Bool
|
|
|
|
|
| eq_op_typed : bin_op_typed EqOp Int Int Bool.
|
|
|
|
|
#[export] Hint Constructors bin_op_typed : core.
|
|
|
|
|
|
|
|
|
|
Inductive un_op_typed : un_op → type → type → Prop :=
|
|
|
|
|
| neg_op_typed : un_op_typed NegOp Bool Bool
|
|
|
|
|
| minus_un_op_typed : un_op_typed MinusUnOp Int Int.
|
|
|
|
|
|
|
|
|
|
Inductive syn_typed : nat → typing_context → expr → type → Prop :=
|
|
|
|
|
| typed_var n Γ x A :
|
|
|
|
|
Γ !! x = Some A →
|
|
|
|
|
TY n; Γ ⊢ (Var x) : A
|
|
|
|
|
| typed_lam n Γ x e A B :
|
|
|
|
|
TY n ; (<[ x := A]> Γ) ⊢ e : B →
|
|
|
|
|
type_wf n A →
|
|
|
|
|
TY n; Γ ⊢ (Lam (BNamed x) e) : (A → B)
|
|
|
|
|
| typed_lam_anon n Γ e A B :
|
|
|
|
|
TY n ; Γ ⊢ e : B →
|
|
|
|
|
type_wf n A →
|
|
|
|
|
TY n; Γ ⊢ (Lam BAnon e) : (A → B)
|
|
|
|
|
| typed_tlam n Γ e A :
|
|
|
|
|
(* we need to shift the context up as we descend under a binder *)
|
|
|
|
|
TY S n; (⤉ Γ) ⊢ e : A →
|
|
|
|
|
TY n; Γ ⊢ (Λ, e) : (∀: A)
|
|
|
|
|
| typed_tapp n Γ A B e :
|
|
|
|
|
TY n; Γ ⊢ e : (∀: A) →
|
|
|
|
|
type_wf n B →
|
|
|
|
|
(* A.[B/] is the notation for Autosubst's substitution operation that
|
|
|
|
|
replaces variable 0 by [B] *)
|
|
|
|
|
TY n; Γ ⊢ (e <>) : (A.[B/])
|
|
|
|
|
| typed_pack n Γ A B e :
|
|
|
|
|
type_wf n B →
|
|
|
|
|
type_wf (S n) A →
|
|
|
|
|
TY n; Γ ⊢ e : (A.[B/]) →
|
|
|
|
|
TY n; Γ ⊢ (pack e) : (∃: A)
|
|
|
|
|
| typed_unpack n Γ A B e e' x :
|
|
|
|
|
type_wf n B → (* we should not leak the existential! *)
|
|
|
|
|
TY n; Γ ⊢ e : (∃: A) →
|
|
|
|
|
(* As we descend under a type variable binder for the typing of [e'],
|
|
|
|
|
we need to shift the indices in [Γ] and [B] up by one.
|
|
|
|
|
On the other hand, [A] is already defined under this binder, so we need not shift it.
|
|
|
|
|
*)
|
|
|
|
|
TY (S n); (<[x := A]>(⤉Γ)) ⊢ e' : (B.[ren (+1)]) →
|
|
|
|
|
TY n; Γ ⊢ (unpack e as BNamed x in e') : B
|
|
|
|
|
| typed_int n Γ z : TY n; Γ ⊢ (Lit $ LitInt z) : Int
|
|
|
|
|
| typed_bool n Γ b : TY n; Γ ⊢ (Lit $ LitBool b) : Bool
|
|
|
|
|
| typed_unit n Γ : TY n; Γ ⊢ (Lit $ LitUnit) : Unit
|
|
|
|
|
| typed_if n Γ e0 e1 e2 A :
|
|
|
|
|
TY n; Γ ⊢ e0 : Bool →
|
|
|
|
|
TY n; Γ ⊢ e1 : A →
|
|
|
|
|
TY n; Γ ⊢ e2 : A →
|
|
|
|
|
TY n; Γ ⊢ If e0 e1 e2 : A
|
|
|
|
|
| typed_app n Γ e1 e2 A B :
|
|
|
|
|
TY n; Γ ⊢ e1 : (A → B) →
|
|
|
|
|
TY n; Γ ⊢ e2 : A →
|
|
|
|
|
TY n; Γ ⊢ (e1 e2)%E : B
|
|
|
|
|
| typed_binop n Γ e1 e2 op A B C :
|
|
|
|
|
bin_op_typed op A B C →
|
|
|
|
|
TY n; Γ ⊢ e1 : A →
|
|
|
|
|
TY n; Γ ⊢ e2 : B →
|
|
|
|
|
TY n; Γ ⊢ BinOp op e1 e2 : C
|
|
|
|
|
| typed_unop n Γ e op A B :
|
|
|
|
|
un_op_typed op A B →
|
|
|
|
|
TY n; Γ ⊢ e : A →
|
|
|
|
|
TY n; Γ ⊢ UnOp op e : B
|
|
|
|
|
| typed_pair n Γ e1 e2 A B :
|
|
|
|
|
TY n; Γ ⊢ e1 : A →
|
|
|
|
|
TY n; Γ ⊢ e2 : B →
|
|
|
|
|
TY n; Γ ⊢ (e1, e2) : A × B
|
|
|
|
|
| typed_fst n Γ e A B :
|
|
|
|
|
TY n; Γ ⊢ e : A × B →
|
|
|
|
|
TY n; Γ ⊢ Fst e : A
|
|
|
|
|
| typed_snd n Γ e A B :
|
|
|
|
|
TY n; Γ ⊢ e : A × B →
|
|
|
|
|
TY n; Γ ⊢ Snd e : B
|
|
|
|
|
| typed_injl n Γ e A B :
|
|
|
|
|
type_wf n B →
|
|
|
|
|
TY n; Γ ⊢ e : A →
|
|
|
|
|
TY n; Γ ⊢ InjL e : A + B
|
|
|
|
|
| typed_injr n Γ e A B :
|
|
|
|
|
type_wf n A →
|
|
|
|
|
TY n; Γ ⊢ e : B →
|
|
|
|
|
TY n; Γ ⊢ InjR e : A + B
|
|
|
|
|
| typed_case n Γ e e1 e2 A B C :
|
|
|
|
|
TY n; Γ ⊢ e : B + C →
|
|
|
|
|
TY n; Γ ⊢ e1 : (B → A) →
|
|
|
|
|
TY n; Γ ⊢ e2 : (C → A) →
|
|
|
|
|
TY n; Γ ⊢ Case e e1 e2 : A
|
|
|
|
|
where "'TY' n ; Γ ⊢ e : A" := (syn_typed n Γ e%E A%ty).
|
|
|
|
|
#[export] Hint Constructors syn_typed : core.
|
|
|
|
|
|
|
|
|
|
(** Examples *)
|
|
|
|
|
Goal TY 0; ∅ ⊢ (λ: "x", #1 + "x")%E : (Int → Int).
|
|
|
|
|
Proof. eauto. Qed.
|
|
|
|
|
(** [∀: #0 → #0] corresponds to [∀ α. α → α] with named binders. *)
|
|
|
|
|
Goal TY 0; ∅ ⊢ (Λ, λ: "x", "x")%E : (∀: #0 → #0).
|
|
|
|
|
Proof. repeat econstructor. Qed.
|
|
|
|
|
Goal TY 0; ∅ ⊢ (pack ((λ: "x", "x"), #42)) : ∃: (#0 → #0) × #0.
|
|
|
|
|
Proof.
|
|
|
|
|
apply (typed_pack _ _ _ Int).
|
|
|
|
|
- eauto.
|
|
|
|
|
- repeat econstructor.
|
|
|
|
|
- (* [asimpl] is Autosubst's tactic for simplifying goals involving type substitutions. *)
|
|
|
|
|
asimpl. eauto.
|
|
|
|
|
Qed.
|
|
|
|
|
Goal TY 0; ∅ ⊢ (unpack (pack ((λ: "x", "x"), #42)) as "y" in (λ: "x", #1337) ((Fst "y") (Snd "y"))) : Int.
|
|
|
|
|
Proof.
|
|
|
|
|
(* if we want to typecheck stuff with existentials, we need a bit more explicit proofs.
|
|
|
|
|
Letting eauto try to instantiate the evars becomes too expensive. *)
|
|
|
|
|
apply (typed_unpack _ _ ((#0 → #0) × #0)%ty).
|
|
|
|
|
- done.
|
|
|
|
|
- apply (typed_pack _ _ _ Int); asimpl; eauto.
|
|
|
|
|
repeat econstructor.
|
|
|
|
|
- eapply (typed_app _ _ _ _ (#0)%ty); eauto 10.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** fails: we are not allowed to leak the existential *)
|
|
|
|
|
Goal TY 0; ∅ ⊢ (unpack (pack ((λ: "x", "x"), #42)) as "y" in (Fst "y") (Snd "y")) : #0.
|
|
|
|
|
Proof.
|
|
|
|
|
apply (typed_unpack _ _ ((#0 → #0) × #0)%ty).
|
|
|
|
|
Abort.
|
|
|
|
|
|
|
|
|
|
(* derived typing rule for match *)
|
|
|
|
|
Lemma typed_match n Γ e e1 e2 x1 x2 A B C :
|
|
|
|
|
type_wf n B →
|
|
|
|
|
type_wf n C →
|
|
|
|
|
TY n; Γ ⊢ e : B + C →
|
|
|
|
|
TY n; <[x1 := B]> Γ ⊢ e1 : A →
|
|
|
|
|
TY n; <[x2 := C]> Γ ⊢ e2 : A →
|
|
|
|
|
TY n; Γ ⊢ match: e with InjL (BNamed x1) => e1 | InjR (BNamed x2) => e2 end : A.
|
|
|
|
|
Proof. eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma syn_typed_closed n Γ e A X :
|
|
|
|
|
TY n ; Γ ⊢ e : A →
|
|
|
|
|
(∀ x, x ∈ dom Γ → x ∈ X) →
|
|
|
|
|
is_closed X e.
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 as [ | ??????? IH | | n Γ e A H IH | | | n Γ A B e e' x Hwf H1 IH1 H2 IH2 | | | | | | | | | | | | | ] in X |-*; simpl; intros Hx; try done.
|
|
|
|
|
|
|
|
|
|
{ (* var *) apply bool_decide_pack, Hx. apply elem_of_dom; eauto. }
|
|
|
|
|
{ (* lam *) apply IH.
|
|
|
|
|
intros y. rewrite elem_of_dom lookup_insert_is_Some.
|
|
|
|
|
intros [<- | [? Hy]]; first by apply elem_of_cons; eauto.
|
|
|
|
|
apply elem_of_cons. right. eapply Hx. by apply elem_of_dom.
|
|
|
|
|
}
|
|
|
|
|
{ (* anon lam *) naive_solver. }
|
|
|
|
|
{ (* tlam *)
|
|
|
|
|
eapply IH. intros x Hel. apply Hx.
|
|
|
|
|
by rewrite dom_fmap in Hel.
|
|
|
|
|
}
|
|
|
|
|
3: { (* unpack *)
|
|
|
|
|
apply andb_True; split.
|
|
|
|
|
- apply IH1. apply Hx.
|
|
|
|
|
- apply IH2. intros y. rewrite elem_of_dom lookup_insert_is_Some.
|
|
|
|
|
intros [<- | [? Hy]]; first by apply elem_of_cons; eauto.
|
|
|
|
|
apply elem_of_cons. right. eapply Hx.
|
|
|
|
|
apply elem_of_dom. revert Hy. rewrite lookup_fmap fmap_is_Some. done.
|
|
|
|
|
}
|
|
|
|
|
(* everything else *)
|
|
|
|
|
all: repeat match goal with
|
|
|
|
|
| |- Is_true (_ && _) => apply andb_True; split
|
|
|
|
|
end.
|
|
|
|
|
all: try naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** *** Lemmas about [type_wf] *)
|
|
|
|
|
Lemma type_wf_mono n m A:
|
|
|
|
|
type_wf n A → n ≤ m → type_wf m A.
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 in m |-*; eauto with lia.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_wf_rename n A δ:
|
|
|
|
|
type_wf n A →
|
|
|
|
|
(∀ i j, i < j → δ i < δ j) →
|
|
|
|
|
type_wf (δ n) (rename δ A).
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 in δ |-*; intros Hmon; simpl; eauto.
|
|
|
|
|
all: econstructor; eapply type_wf_mono; first eapply IHtype_wf; last done.
|
|
|
|
|
all: intros i j Hlt; destruct i, j; simpl; try lia.
|
|
|
|
|
all: rewrite -Nat.succ_lt_mono; eapply Hmon; lia.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** [A.[σ]], i.e. [A] with the substitution [σ] applied to it, is well-formed under [m] if
|
|
|
|
|
[A] is well-formed under [n] and all the things we substitute up to [n] are well-formed under [m].
|
|
|
|
|
*)
|
|
|
|
|
Lemma type_wf_subst n m A σ:
|
|
|
|
|
type_wf n A →
|
|
|
|
|
(∀ x, x < n → type_wf m (σ x)) →
|
|
|
|
|
type_wf m A.[σ].
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 in m, σ |-*; intros Hsub; simpl; eauto.
|
|
|
|
|
+ econstructor; eapply IHtype_wf.
|
|
|
|
|
intros [|x]; rewrite /up //=.
|
|
|
|
|
- econstructor. lia.
|
|
|
|
|
- intros Hlt % Nat.succ_lt_mono. eapply type_wf_rename; eauto.
|
|
|
|
|
intros i j Hlt'; simpl; lia.
|
|
|
|
|
+ econstructor; eapply IHtype_wf.
|
|
|
|
|
intros [|x]; rewrite /up //=.
|
|
|
|
|
- econstructor. lia.
|
|
|
|
|
- intros Hlt % Nat.succ_lt_mono. eapply type_wf_rename; eauto.
|
|
|
|
|
intros i j Hlt'; simpl; lia.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_wf_single_subst n A B: type_wf n B → type_wf (S n) A → type_wf n A.[B/].
|
|
|
|
|
Proof.
|
|
|
|
|
intros HB HA. eapply type_wf_subst; first done.
|
|
|
|
|
intros [|x]; simpl; eauto.
|
|
|
|
|
intros ?; econstructor. lia.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** We lift [type_wf] to well-formedness of contexts *)
|
|
|
|
|
Definition ctx_wf n Γ := (∀ x A, Γ !! x = Some A → type_wf n A).
|
|
|
|
|
|
|
|
|
|
Lemma ctx_wf_empty n : ctx_wf n ∅.
|
|
|
|
|
Proof. rewrite /ctx_wf. set_solver. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma ctx_wf_insert n x Γ A: ctx_wf n Γ → type_wf n A → ctx_wf n (<[x := A]> Γ).
|
|
|
|
|
Proof. intros H1 H2 y B. rewrite lookup_insert_Some. naive_solver. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma ctx_wf_up n Γ:
|
|
|
|
|
ctx_wf n Γ → ctx_wf (S n) (⤉Γ).
|
|
|
|
|
Proof.
|
|
|
|
|
intros Hwf x A; rewrite lookup_fmap.
|
|
|
|
|
intros (B & Hlook & ->) % fmap_Some.
|
|
|
|
|
asimpl. eapply type_wf_subst; first eauto.
|
|
|
|
|
intros y Hlt. simpl. econstructor. lia.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
#[global]
|
|
|
|
|
Hint Resolve ctx_wf_empty ctx_wf_insert ctx_wf_up : core.
|
|
|
|
|
|
|
|
|
|
(** Well-typed terms at [A] under a well-formed context have well-formed types [A].*)
|
|
|
|
|
Lemma syn_typed_wf n Γ e A:
|
|
|
|
|
ctx_wf n Γ →
|
|
|
|
|
TY n; Γ ⊢ e : A →
|
|
|
|
|
type_wf n A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros Hwf; induction 1 as [ | n Γ x e A B Hty IH Hwfty | | n Γ e A Hty IH | n Γ A B e Hty IH Hwfty | n Γ A B e Hwfty Hty IH| | | | | | n Γ e1 e2 A B HtyA IHA HtyB IHB | n Γ e1 e2 op A B C Hop HtyA IHA HtyB IHB | n Γ e op A B Hop H IH | n Γ e1 e2 A B HtyA IHA HtyB IHB | n Γ e A B Hty IH | n Γ e A B Hty IH | n Γ e A B Hwfty Hty IH | n Γ e A B Hwfty Hty IH| n Γ e e1 e2 A B C Htye IHe Htye1 IHe1 Htye2 IHe2 ]; eauto.
|
|
|
|
|
- eapply type_wf_single_subst; first done.
|
|
|
|
|
specialize (IH Hwf) as Hwf'.
|
|
|
|
|
by inversion Hwf'.
|
|
|
|
|
- specialize (IHA Hwf) as Hwf'.
|
|
|
|
|
by inversion Hwf'; subst.
|
|
|
|
|
- inversion Hop; subst; eauto.
|
|
|
|
|
- inversion Hop; subst; eauto.
|
|
|
|
|
- specialize (IH Hwf) as Hwf'. by inversion Hwf'; subst.
|
|
|
|
|
- specialize (IH Hwf) as Hwf'. by inversion Hwf'; subst.
|
|
|
|
|
- specialize (IHe1 Hwf) as Hwf''. by inversion Hwf''; subst.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma renaming_inclusion Γ Δ : Γ ⊆ Δ → ⤉Γ ⊆ ⤉Δ.
|
|
|
|
|
Proof.
|
|
|
|
|
eapply map_fmap_mono.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_weakening n m Γ Δ e A:
|
|
|
|
|
TY n; Γ ⊢ e : A →
|
|
|
|
|
Γ ⊆ Δ →
|
|
|
|
|
n ≤ m →
|
|
|
|
|
TY m; Δ ⊢ e : A.
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 as [| n Γ x e A B Htyp IH | | n Γ e A Htyp IH | | |n Γ A B e e' x Hwf H1 IH1 H2 IH2 | | | | | | | | | | | | | ] in Δ, m |-*; intros Hsub Hle; eauto using type_wf_mono.
|
|
|
|
|
- (* var *) econstructor. by eapply lookup_weaken.
|
|
|
|
|
- (* lam *) econstructor; last by eapply type_wf_mono. eapply IH; eauto. by eapply insert_mono.
|
|
|
|
|
- (* tlam *) econstructor. eapply IH; last by lia. by eapply renaming_inclusion.
|
|
|
|
|
- (* pack *)
|
|
|
|
|
econstructor; last naive_solver. all: (eapply type_wf_mono; [ done | lia]).
|
|
|
|
|
- (* unpack *) econstructor.
|
|
|
|
|
+ eapply type_wf_mono; done.
|
|
|
|
|
+ eapply IH1; done.
|
|
|
|
|
+ eapply IH2; last lia. apply insert_mono. by apply renaming_inclusion.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_wf_subst_dom σ τ n A:
|
|
|
|
|
type_wf n A →
|
|
|
|
|
(∀ m, m < n → σ m = τ m) →
|
|
|
|
|
A.[σ] = A.[τ].
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 in σ, τ |-*; simpl; eauto.
|
|
|
|
|
- (* tforall *)
|
|
|
|
|
intros Heq; asimpl. f_equal.
|
|
|
|
|
eapply IHtype_wf; intros [|m]; rewrite /up; simpl; first done.
|
|
|
|
|
intros Hlt. f_equal. eapply Heq. lia.
|
|
|
|
|
- (* texists *)
|
|
|
|
|
intros Heq; asimpl. f_equal.
|
|
|
|
|
eapply IHtype_wf. intros [ | m]; rewrite /up; simpl; first done.
|
|
|
|
|
intros Hlt. f_equal. apply Heq. lia.
|
|
|
|
|
- (* fun *) intros ?. f_equal; eauto.
|
|
|
|
|
- (* prod *) intros ?. f_equal; eauto.
|
|
|
|
|
- (* sum *) intros ?. f_equal; eauto.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_wf_closed A σ:
|
|
|
|
|
type_wf 0 A →
|
|
|
|
|
A.[σ] = A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros Hwf; erewrite (type_wf_subst_dom _ (ids) 0).
|
|
|
|
|
- by asimpl.
|
|
|
|
|
- done.
|
|
|
|
|
- intros ??; lia.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** Typing inversion lemmas *)
|
|
|
|
|
Lemma var_inversion Γ n (x: string) A: TY n; Γ ⊢ x : A → Γ !! x = Some A.
|
|
|
|
|
Proof. inversion 1; subst; auto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma lam_inversion n Γ (x: string) e C:
|
|
|
|
|
TY n; Γ ⊢ (λ: x, e) : C →
|
|
|
|
|
∃ A B, C = (A → B)%ty ∧ type_wf n A ∧ TY n; <[x:=A]> Γ ⊢ e : B.
|
|
|
|
|
Proof. inversion 1; subst; eauto 10. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma lam_anon_inversion n Γ e C:
|
|
|
|
|
TY n; Γ ⊢ (λ: <>, e) : C →
|
|
|
|
|
∃ A B, C = (A → B)%ty ∧ type_wf n A ∧ TY n; Γ ⊢ e : B.
|
|
|
|
|
Proof. inversion 1; subst; eauto 10. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma app_inversion n Γ e1 e2 B:
|
|
|
|
|
TY n; Γ ⊢ e1 e2 : B →
|
|
|
|
|
∃ A, TY n; Γ ⊢ e1 : (A → B) ∧ TY n; Γ ⊢ e2 : A.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma if_inversion n Γ e0 e1 e2 B:
|
|
|
|
|
TY n; Γ ⊢ If e0 e1 e2 : B →
|
|
|
|
|
TY n; Γ ⊢ e0 : Bool ∧ TY n; Γ ⊢ e1 : B ∧ TY n; Γ ⊢ e2 : B.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma binop_inversion n Γ op e1 e2 B:
|
|
|
|
|
TY n; Γ ⊢ BinOp op e1 e2 : B →
|
|
|
|
|
∃ A1 A2, bin_op_typed op A1 A2 B ∧ TY n; Γ ⊢ e1 : A1 ∧ TY n; Γ ⊢ e2 : A2.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma unop_inversion n Γ op e B:
|
|
|
|
|
TY n; Γ ⊢ UnOp op e : B →
|
|
|
|
|
∃ A, un_op_typed op A B ∧ TY n; Γ ⊢ e : A.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_app_inversion n Γ e B:
|
|
|
|
|
TY n; Γ ⊢ e <> : B →
|
|
|
|
|
∃ A C, B = A.[C/] ∧ type_wf n C ∧ TY n; Γ ⊢ e : (∀: A).
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_lam_inversion n Γ e B:
|
|
|
|
|
TY n; Γ ⊢ (Λ,e) : B →
|
|
|
|
|
∃ A, B = (∀: A)%ty ∧ TY (S n); ⤉Γ ⊢ e : A.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_pack_inversion n Γ e B :
|
|
|
|
|
TY n; Γ ⊢ (pack e) : B →
|
|
|
|
|
∃ A C, B = (∃: A)%ty ∧ TY n; Γ ⊢ e : (A.[C/])%ty ∧ type_wf n C ∧ type_wf (S n) A.
|
|
|
|
|
Proof. inversion 1; subst; eauto 10. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma type_unpack_inversion n Γ e e' x B :
|
|
|
|
|
TY n; Γ ⊢ (unpack e as x in e') : B →
|
|
|
|
|
∃ A x', x = BNamed x' ∧ type_wf n B ∧ TY n; Γ ⊢ e : (∃: A) ∧ TY S n; <[x' := A]> (⤉Γ) ⊢ e' : (B.[ren (+1)]).
|
|
|
|
|
Proof. inversion 1; subst; eauto 10. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma pair_inversion n Γ e1 e2 C :
|
|
|
|
|
TY n; Γ ⊢ (e1, e2) : C →
|
|
|
|
|
∃ A B, C = (A × B)%ty ∧ TY n; Γ ⊢ e1 : A ∧ TY n; Γ ⊢ e2 : B.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma fst_inversion n Γ e A :
|
|
|
|
|
TY n; Γ ⊢ Fst e : A →
|
|
|
|
|
∃ B, TY n; Γ ⊢ e : A × B.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma snd_inversion n Γ e B :
|
|
|
|
|
TY n; Γ ⊢ Snd e : B →
|
|
|
|
|
∃ A, TY n; Γ ⊢ e : A × B.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma injl_inversion n Γ e C :
|
|
|
|
|
TY n; Γ ⊢ InjL e : C →
|
|
|
|
|
∃ A B, C = (A + B)%ty ∧ TY n; Γ ⊢ e : A ∧ type_wf n B.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma injr_inversion n Γ e C :
|
|
|
|
|
TY n; Γ ⊢ InjR e : C →
|
|
|
|
|
∃ A B, C = (A + B)%ty ∧ TY n; Γ ⊢ e : B ∧ type_wf n A.
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma case_inversion n Γ e e1 e2 A :
|
|
|
|
|
TY n; Γ ⊢ Case e e1 e2 : A →
|
|
|
|
|
∃ B C, TY n; Γ ⊢ e : B + C ∧ TY n; Γ ⊢ e1 : (B → A) ∧ TY n; Γ ⊢ e2 : (C → A).
|
|
|
|
|
Proof. inversion 1; subst; eauto. Qed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lemma typed_substitutivity n e e' Γ (x: string) A B :
|
|
|
|
|
TY 0; ∅ ⊢ e' : A →
|
|
|
|
|
TY n; (<[x := A]> Γ) ⊢ e : B →
|
|
|
|
|
TY n; Γ ⊢ lang.subst x e' e : B.
|
|
|
|
|
Proof.
|
|
|
|
|
intros He'. revert n B Γ; induction e as [| y | y | | | | | | | | | | | | | | ]; intros n B Γ; simpl.
|
|
|
|
|
- inversion 1; subst; auto.
|
|
|
|
|
- intros Hp % var_inversion.
|
|
|
|
|
destruct (decide (x = y)).
|
|
|
|
|
+ subst. rewrite lookup_insert in Hp. injection Hp as ->.
|
|
|
|
|
eapply typed_weakening; [done| |lia]. apply map_empty_subseteq.
|
|
|
|
|
+ rewrite lookup_insert_ne in Hp; last done. auto.
|
|
|
|
|
- destruct y as [ | y].
|
|
|
|
|
{ intros (A' & C & -> & Hwf & Hty) % lam_anon_inversion.
|
|
|
|
|
econstructor; last done. destruct decide as [Heq|].
|
|
|
|
|
+ congruence.
|
|
|
|
|
+ eauto.
|
|
|
|
|
}
|
|
|
|
|
intros (A' & C & -> & Hwf & Hty) % lam_inversion.
|
|
|
|
|
econstructor; last done. destruct decide as [Heq|].
|
|
|
|
|
+ injection Heq as [= ->]. by rewrite insert_insert in Hty.
|
|
|
|
|
+ rewrite insert_commute in Hty; last naive_solver. eauto.
|
|
|
|
|
- intros (C & Hty1 & Hty2) % app_inversion. eauto.
|
|
|
|
|
- intros (? & Hop & H1) % unop_inversion.
|
|
|
|
|
destruct op; inversion Hop; subst; eauto.
|
|
|
|
|
- intros (? & ? & Hop & H1 & H2) % binop_inversion.
|
|
|
|
|
destruct op; inversion Hop; subst; eauto.
|
|
|
|
|
- intros (H1 & H2 & H3)%if_inversion. naive_solver.
|
|
|
|
|
- intros (C & D & -> & Hwf & Hty) % type_app_inversion. eauto.
|
|
|
|
|
- intros (C & -> & Hty)%type_lam_inversion. econstructor.
|
|
|
|
|
eapply IHe. revert Hty. rewrite fmap_insert.
|
|
|
|
|
eapply syn_typed_wf in He'; last by naive_solver.
|
|
|
|
|
rewrite type_wf_closed; eauto.
|
|
|
|
|
- intros (C & D & -> & Hty & Hwf1 & Hwf2)%type_pack_inversion.
|
|
|
|
|
econstructor; [done..|]. apply IHe. done.
|
|
|
|
|
- intros (C & x' & -> & Hwf & Hty1 & Hty2)%type_unpack_inversion.
|
|
|
|
|
econstructor; first done.
|
|
|
|
|
+ eapply IHe1. done.
|
|
|
|
|
+ destruct decide as [Heq | ].
|
|
|
|
|
* injection Heq as [= ->]. by rewrite fmap_insert insert_insert in Hty2.
|
|
|
|
|
* rewrite fmap_insert in Hty2. rewrite insert_commute in Hty2; last naive_solver.
|
|
|
|
|
eapply IHe2. rewrite type_wf_closed in Hty2; first done.
|
|
|
|
|
eapply syn_typed_wf; last apply He'. done.
|
|
|
|
|
- intros (? & ? & -> & ? & ?) % pair_inversion. eauto.
|
|
|
|
|
- intros (? & ?)%fst_inversion. eauto.
|
|
|
|
|
- intros (? & ?)%snd_inversion. eauto.
|
|
|
|
|
- intros (? & ? & -> & ? & ?)%injl_inversion. eauto.
|
|
|
|
|
- intros (? & ? & -> & ? & ?)%injr_inversion. eauto.
|
|
|
|
|
- intros (? & ? & ? & ? & ?)%case_inversion. eauto.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** Canonical values *)
|
|
|
|
|
Lemma canonical_values_arr n Γ e A B:
|
|
|
|
|
TY n; Γ ⊢ e : (A → B) →
|
|
|
|
|
is_val e →
|
|
|
|
|
∃ x e', e = (λ: x, e')%E.
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_forall n Γ e A:
|
|
|
|
|
TY n; Γ ⊢ e : (∀: A)%ty →
|
|
|
|
|
is_val e →
|
|
|
|
|
∃ e', e = (Λ, e')%E.
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_exists n Γ e A :
|
|
|
|
|
TY n; Γ ⊢ e : (∃: A) →
|
|
|
|
|
is_val e →
|
|
|
|
|
∃ e', e = (pack e')%E.
|
|
|
|
|
Proof. inversion 1; simpl; naive_solver. Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_int n Γ e:
|
|
|
|
|
TY n; Γ ⊢ e : Int →
|
|
|
|
|
is_val e →
|
|
|
|
|
∃ n: Z, e = (#n)%E.
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_bool n Γ e:
|
|
|
|
|
TY n; Γ ⊢ e : Bool →
|
|
|
|
|
is_val e →
|
|
|
|
|
∃ b: bool, e = (#b)%E.
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_unit n Γ e:
|
|
|
|
|
TY n; Γ ⊢ e : Unit →
|
|
|
|
|
is_val e →
|
|
|
|
|
e = (#LitUnit)%E.
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_prod n Γ e A B :
|
|
|
|
|
TY n; Γ ⊢ e : A × B →
|
|
|
|
|
is_val e →
|
|
|
|
|
∃ e1 e2, e = (e1, e2)%E ∧ is_val e1 ∧ is_val e2.
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma canonical_values_sum n Γ e A B :
|
|
|
|
|
TY n; Γ ⊢ e : A + B →
|
|
|
|
|
is_val e →
|
|
|
|
|
(∃ e', e = InjL e' ∧ is_val e') ∨ (∃ e', e = InjR e' ∧ is_val e').
|
|
|
|
|
Proof.
|
|
|
|
|
inversion 1; simpl; naive_solver.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** Progress *)
|
|
|
|
|
Lemma typed_progress e A:
|
|
|
|
|
TY 0; ∅ ⊢ e : A → is_val e ∨ reducible e.
|
|
|
|
|
Proof.
|
|
|
|
|
remember ∅ as Γ. remember 0 as n.
|
|
|
|
|
induction 1 as [| | | | n Γ A B e Hty IH | n Γ A B e Hwf Hwf' Hty IH | n Γ A B e e' x Hwf Hty1 IH1 Hty2 IH2 | | | | n Γ e0 e1 e2 A Hty1 IH1 Hty2 IH2 Hty3 IH3 | n Γ e1 e2 A B Hty IH1 _ IH2 | n Γ e1 e2 op A B C Hop Hty1 IH1 Hty2 IH2 | n Γ e op A B Hop Hty IH | n Γ e1 e2 A B Hty1 IH1 Hty2 IH2 | n Γ e A B Hty IH | n Γ e A B Hty IH | n Γ e A B Hwf Hty IH | n Γ e A B Hwf Hty IH| n Γ e e1 e2 A B C Htye IHe Htye1 IHe1 Htye2 IHe2].
|
|
|
|
|
- subst. naive_solver.
|
|
|
|
|
- left. done.
|
|
|
|
|
- left. done.
|
|
|
|
|
- (* big lambda *) left; done.
|
|
|
|
|
- (* type app *)
|
|
|
|
|
right. destruct (IH HeqΓ Heqn) as [H1|H1].
|
|
|
|
|
+ eapply canonical_values_forall in Hty as [e' ->]; last done.
|
|
|
|
|
eexists. eapply base_contextual_step. eapply TBetaS.
|
|
|
|
|
+ destruct H1 as [e' H1]. eexists. eauto.
|
|
|
|
|
- (* pack *)
|
|
|
|
|
destruct (IH HeqΓ Heqn) as [H | H].
|
|
|
|
|
+ by left.
|
|
|
|
|
+ right. destruct H as [e' H]. eexists. eauto.
|
|
|
|
|
- (* unpack *)
|
|
|
|
|
destruct (IH1 HeqΓ Heqn) as [H | H].
|
|
|
|
|
+ eapply canonical_values_exists in Hty1 as [e'' ->]; last done.
|
|
|
|
|
right. eexists. eapply base_contextual_step. constructor; last done.
|
|
|
|
|
done.
|
|
|
|
|
+ right. destruct H as [e'' H]. eexists. eauto.
|
|
|
|
|
- (* int *)left. done.
|
|
|
|
|
- (* bool*) left. done.
|
|
|
|
|
- (* unit *) left. done.
|
|
|
|
|
- (* if *)
|
|
|
|
|
destruct (IH1 HeqΓ Heqn) as [H1 | H1].
|
|
|
|
|
+ eapply canonical_values_bool in Hty1 as (b & ->); last done.
|
|
|
|
|
right. destruct b; eexists; eapply base_contextual_step; constructor.
|
|
|
|
|
+ right. destruct H1 as [e0' Hstep].
|
|
|
|
|
eexists. eauto.
|
|
|
|
|
- (* app *)
|
|
|
|
|
destruct (IH2 HeqΓ Heqn) as [H2|H2]; [destruct (IH1 HeqΓ Heqn) as [H1|H1]|].
|
|
|
|
|
+ eapply canonical_values_arr in Hty as (x & e & ->); last done.
|
|
|
|
|
right. eexists.
|
|
|
|
|
eapply base_contextual_step, BetaS; eauto.
|
|
|
|
|
+ right. destruct H1 as [e1' Hstep].
|
|
|
|
|
eexists. eauto.
|
|
|
|
|
+ right. destruct H2 as [e2' H2].
|
|
|
|
|
eexists. eauto.
|
|
|
|
|
- (* binop *)
|
|
|
|
|
assert (A = Int ∧ B = Int) as [-> ->].
|
|
|
|
|
{ inversion Hop; subst A B C; done. }
|
|
|
|
|
destruct (IH2 HeqΓ Heqn) as [H2|H2]; [destruct (IH1 HeqΓ Heqn) as [H1|H1]|].
|
|
|
|
|
+ right. eapply canonical_values_int in Hty1 as [n1 ->]; last done.
|
|
|
|
|
eapply canonical_values_int in Hty2 as [n2 ->]; last done.
|
|
|
|
|
inversion Hop; subst; simpl.
|
|
|
|
|
all: eexists; eapply base_contextual_step; eapply BinOpS; eauto.
|
|
|
|
|
+ right. destruct H1 as [e1' Hstep]. eexists. eauto.
|
|
|
|
|
+ right. destruct H2 as [e2' H2]. eexists. eauto.
|
|
|
|
|
- (* unop *)
|
|
|
|
|
inversion Hop; subst A B op.
|
|
|
|
|
+ right. destruct (IH HeqΓ Heqn) as [H2 | H2].
|
|
|
|
|
* eapply canonical_values_bool in Hty as [b ->]; last done.
|
|
|
|
|
eexists; eapply base_contextual_step; eapply UnOpS; eauto.
|
|
|
|
|
* destruct H2 as [e' H2]. eexists. eauto.
|
|
|
|
|
+ right. destruct (IH HeqΓ Heqn) as [H2 | H2].
|
|
|
|
|
* eapply canonical_values_int in Hty as [z ->]; last done.
|
|
|
|
|
eexists; eapply base_contextual_step; eapply UnOpS; eauto.
|
|
|
|
|
* destruct H2 as [e' H2]. eexists. eauto.
|
|
|
|
|
- (* pair *)
|
|
|
|
|
destruct (IH2 HeqΓ Heqn) as [H2|H2]; [destruct (IH1 HeqΓ Heqn) as [H1|H1]|].
|
|
|
|
|
+ left. done.
|
|
|
|
|
+ right. destruct H1 as [e1' Hstep]. eexists. eauto.
|
|
|
|
|
+ right. destruct H2 as [e2' H2]. eexists. eauto.
|
|
|
|
|
- (* fst *)
|
|
|
|
|
destruct (IH HeqΓ Heqn) as [H | H].
|
|
|
|
|
+ eapply canonical_values_prod in Hty as (e1 & e2 & -> & ? & ?); last done.
|
|
|
|
|
right. eexists. eapply base_contextual_step. econstructor; done.
|
|
|
|
|
+ right. destruct H as [e' H]. eexists. eauto.
|
|
|
|
|
- (* snd *)
|
|
|
|
|
destruct (IH HeqΓ Heqn) as [H | H].
|
|
|
|
|
+ eapply canonical_values_prod in Hty as (e1 & e2 & -> & ? & ?); last done.
|
|
|
|
|
right. eexists. eapply base_contextual_step. econstructor; done.
|
|
|
|
|
+ right. destruct H as [e' H]. eexists. eauto.
|
|
|
|
|
- (* injl *)
|
|
|
|
|
destruct (IH HeqΓ Heqn) as [H | H].
|
|
|
|
|
+ left. done.
|
|
|
|
|
+ right. destruct H as [e' H]. eexists. eauto.
|
|
|
|
|
- (* injr *)
|
|
|
|
|
destruct (IH HeqΓ Heqn) as [H | H].
|
|
|
|
|
+ left. done.
|
|
|
|
|
+ right. destruct H as [e' H]. eexists. eauto.
|
|
|
|
|
- (* case *)
|
|
|
|
|
right. destruct (IHe HeqΓ Heqn) as [H1|H1].
|
|
|
|
|
+ eapply canonical_values_sum in Htye as [(e' & -> & ?) | (e' & -> & ?)]; last done.
|
|
|
|
|
* eexists. eapply base_contextual_step. econstructor. done.
|
|
|
|
|
* eexists. eapply base_contextual_step. econstructor. done.
|
|
|
|
|
+ destruct H1 as [e' H1]. eexists. eauto.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Definition ectx_typing (K: ectx) (A B: type) :=
|
|
|
|
|
∀ e, TY 0; ∅ ⊢ e : A → TY 0; ∅ ⊢ (fill K e) : B.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lemma fill_typing_decompose K e A:
|
|
|
|
|
TY 0; ∅ ⊢ fill K e : A →
|
|
|
|
|
∃ B, TY 0; ∅ ⊢ e : B ∧ ectx_typing K B A.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold ectx_typing; induction K in A |-*; simpl; inversion 1; subst; eauto.
|
|
|
|
|
all: edestruct IHK as (? & ? & ?); eauto.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma fill_typing_compose K e A B:
|
|
|
|
|
TY 0; ∅ ⊢ e : B →
|
|
|
|
|
ectx_typing K B A →
|
|
|
|
|
TY 0; ∅ ⊢ fill K e : A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros H1 H2; by eapply H2.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma fmap_up_subst σ Γ: ⤉(subst σ <$> Γ) = subst (up σ) <$> ⤉Γ.
|
|
|
|
|
Proof.
|
|
|
|
|
rewrite -!map_fmap_compose.
|
|
|
|
|
eapply map_fmap_ext. intros x A _. by asimpl.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_subst_type n m Γ e A σ:
|
|
|
|
|
TY n; Γ ⊢ e : A → (∀ k, k < n → type_wf m (σ k)) → TY m; (subst σ) <$> Γ ⊢ e : A.[σ].
|
|
|
|
|
Proof.
|
|
|
|
|
induction 1 as [ n Γ x A Heq | | | n Γ e A Hty IH | |n Γ A B e Hwf Hwf' Hty IH | n Γ A B e e' x Hwf Hty1 IH1 Hty2 IH2 | | | | | |? ? ? ? ? ? ? ? Hop | ? ? ? ? ? ? Hop | | | | | | ] in σ, m |-*; simpl; intros Hlt; eauto.
|
|
|
|
|
- econstructor. rewrite lookup_fmap Heq //=.
|
|
|
|
|
- econstructor; last by eapply type_wf_subst.
|
|
|
|
|
rewrite -fmap_insert. eauto.
|
|
|
|
|
- econstructor; last by eapply type_wf_subst. eauto.
|
|
|
|
|
- econstructor. rewrite fmap_up_subst. eapply IH.
|
|
|
|
|
intros [| x] Hlt'; rewrite /up //=.
|
|
|
|
|
+ econstructor. lia.
|
|
|
|
|
+ eapply type_wf_rename; last by (intros ???; simpl; lia).
|
|
|
|
|
eapply Hlt. lia.
|
|
|
|
|
- replace (A.[B/].[σ]) with (A.[up σ].[B.[σ]/]) by by asimpl.
|
|
|
|
|
eauto using type_wf_subst.
|
|
|
|
|
- (* pack *)
|
|
|
|
|
eapply (typed_pack _ _ _ (subst σ B)).
|
|
|
|
|
+ eapply type_wf_subst; done.
|
|
|
|
|
+ eapply type_wf_subst; first done.
|
|
|
|
|
intros [ | k] Hk; first ( asimpl;constructor; lia).
|
|
|
|
|
rewrite /up //=. eapply type_wf_rename; last by (intros ???; simpl; lia).
|
|
|
|
|
eapply Hlt. lia.
|
|
|
|
|
+ replace (A.[up σ].[B.[σ]/]) with (A.[B/].[σ]) by by asimpl.
|
|
|
|
|
eauto using type_wf_subst.
|
|
|
|
|
- (* unpack *)
|
|
|
|
|
eapply (typed_unpack _ _ A.[up σ]).
|
|
|
|
|
+ eapply type_wf_subst; done.
|
|
|
|
|
+ replace (∃: A.[up σ])%ty with ((∃: A).[σ])%ty by by asimpl.
|
|
|
|
|
eapply IH1. done.
|
|
|
|
|
+ rewrite fmap_up_subst. rewrite -fmap_insert.
|
|
|
|
|
replace (B.[σ].[ren (+1)]) with (B.[ren(+1)].[up σ]) by by asimpl.
|
|
|
|
|
eapply IH2.
|
|
|
|
|
intros [ | k] Hk; asimpl; first (constructor; lia).
|
|
|
|
|
eapply type_wf_subst; first (eapply Hlt; lia).
|
|
|
|
|
intros k' Hk'. asimpl. constructor. lia.
|
|
|
|
|
- (* binop *)
|
|
|
|
|
inversion Hop; subst.
|
|
|
|
|
all: econstructor; naive_solver.
|
|
|
|
|
- (* unop *)
|
|
|
|
|
inversion Hop; subst.
|
|
|
|
|
all: econstructor; naive_solver.
|
|
|
|
|
- econstructor; last naive_solver. by eapply type_wf_subst.
|
|
|
|
|
- econstructor; last naive_solver. by eapply type_wf_subst.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_subst_type_closed C e A:
|
|
|
|
|
type_wf 0 C → TY 1; ⤉∅ ⊢ e : A → TY 0; ∅ ⊢ e : A.[C/].
|
|
|
|
|
Proof.
|
|
|
|
|
intros Hwf Hty. eapply typed_subst_type with (σ := C .: ids) (m := 0) in Hty; last first.
|
|
|
|
|
{ intros [|k] Hlt; last lia. done. }
|
|
|
|
|
revert Hty. by rewrite !fmap_empty.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_subst_type_closed' x C B e A:
|
|
|
|
|
type_wf 0 A →
|
|
|
|
|
type_wf 1 C →
|
|
|
|
|
type_wf 0 B →
|
|
|
|
|
TY 1; <[x := C]> ∅ ⊢ e : A →
|
|
|
|
|
TY 0; <[x := C.[B/]]> ∅ ⊢ e : A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros ??? Hty.
|
|
|
|
|
set (s := (subst (B.:ids))).
|
|
|
|
|
rewrite -(fmap_empty s) -(fmap_insert s).
|
|
|
|
|
replace A with (A.[B/]).
|
|
|
|
|
2: { replace A with (A.[ids]) at 2 by by asimpl.
|
|
|
|
|
eapply type_wf_subst_dom; first done. lia.
|
|
|
|
|
}
|
|
|
|
|
eapply typed_subst_type; first done.
|
|
|
|
|
intros [ | k] Hk; last lia. done.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_preservation_base_step e e' A:
|
|
|
|
|
TY 0; ∅ ⊢ e : A →
|
|
|
|
|
base_step e e' →
|
|
|
|
|
TY 0; ∅ ⊢ e' : A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros Hty Hstep. destruct Hstep as [ | | | op e v v' Heq Heval | op e1 v1 e2 v2 v3 Heq1 Heq2 Heval | | | | | | ]; subst.
|
|
|
|
|
- eapply app_inversion in Hty as (B & H1 & H2).
|
|
|
|
|
destruct x as [|x].
|
|
|
|
|
{ eapply lam_anon_inversion in H1 as (C & D & [= -> ->] & Hwf & Hty). done. }
|
|
|
|
|
eapply lam_inversion in H1 as (C & D & Heq & Hwf & Hty).
|
|
|
|
|
injection Heq as -> ->.
|
|
|
|
|
eapply typed_substitutivity; eauto.
|
|
|
|
|
- eapply type_app_inversion in Hty as (B & C & -> & Hwf & Hty).
|
|
|
|
|
eapply type_lam_inversion in Hty as (A & Heq & Hty).
|
|
|
|
|
injection Heq as ->. by eapply typed_subst_type_closed.
|
|
|
|
|
- (* unpack *)
|
|
|
|
|
eapply type_unpack_inversion in Hty as (B & x' & -> & Hwf & Hty1 & Hty2).
|
|
|
|
|
eapply type_pack_inversion in Hty1 as (B' & C & [= <-] & Hty1 & ? & ?).
|
|
|
|
|
eapply typed_substitutivity.
|
|
|
|
|
{ apply Hty1. }
|
|
|
|
|
rewrite fmap_empty in Hty2.
|
|
|
|
|
eapply typed_subst_type_closed'; eauto.
|
|
|
|
|
replace A with A.[ids] by by asimpl.
|
|
|
|
|
enough (A.[ids] = A.[ren (+1)]) as -> by done.
|
|
|
|
|
eapply type_wf_subst_dom; first done. intros; lia.
|
|
|
|
|
- (* unop *)
|
|
|
|
|
eapply unop_inversion in Hty as (A1 & Hop & Hty).
|
|
|
|
|
assert ((A1 = Int ∧ A = Int) ∨ (A1 = Bool ∧ A = Bool)) as [(-> & ->) | (-> & ->)].
|
|
|
|
|
{ inversion Hop; subst; eauto. }
|
|
|
|
|
+ eapply canonical_values_int in Hty as [n ->]; last by eapply is_val_spec; eauto.
|
|
|
|
|
simpl in Heq. injection Heq as <-.
|
|
|
|
|
inversion Hop; subst; simpl in *; injection Heval as <-; constructor.
|
|
|
|
|
+ eapply canonical_values_bool in Hty as [b ->]; last by eapply is_val_spec; eauto.
|
|
|
|
|
simpl in Heq. injection Heq as <-.
|
|
|
|
|
inversion Hop; subst; simpl in *; injection Heval as <-; constructor.
|
|
|
|
|
- (* binop *)
|
|
|
|
|
eapply binop_inversion in Hty as (A1 & A2 & Hop & Hty1 & Hty2).
|
|
|
|
|
assert (A1 = Int ∧ A2 = Int ∧ (A = Int ∨ A = Bool)) as (-> & -> & HC).
|
|
|
|
|
{ inversion Hop; subst; eauto. }
|
|
|
|
|
eapply canonical_values_int in Hty1 as [n ->]; last by eapply is_val_spec; eauto.
|
|
|
|
|
eapply canonical_values_int in Hty2 as [m ->]; last by eapply is_val_spec; eauto.
|
|
|
|
|
simpl in Heq1, Heq2. injection Heq1 as <-. injection Heq2 as <-.
|
|
|
|
|
simpl in Heval.
|
|
|
|
|
inversion Hop; subst; simpl in *; injection Heval as <-; constructor.
|
|
|
|
|
- by eapply if_inversion in Hty as (H1 & H2 & H3).
|
|
|
|
|
- by eapply if_inversion in Hty as (H1 & H2 & H3).
|
|
|
|
|
- by eapply fst_inversion in Hty as (B & (? & ? & [= <- <-] & ? & ?)%pair_inversion).
|
|
|
|
|
- by eapply snd_inversion in Hty as (B & (? & ? & [= <- <-] & ? & ?)%pair_inversion).
|
|
|
|
|
- eapply case_inversion in Hty as (B & C & (? & ? & [= <- <-] & Hty & ?)%injl_inversion & ? & ?).
|
|
|
|
|
eauto.
|
|
|
|
|
- eapply case_inversion in Hty as (B & C & (? & ? & [= <- <-] & Hty & ?)%injr_inversion & ? & ?).
|
|
|
|
|
eauto.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_preservation e e' A:
|
|
|
|
|
TY 0; ∅ ⊢ e : A →
|
|
|
|
|
contextual_step e e' →
|
|
|
|
|
TY 0; ∅ ⊢ e' : A.
|
|
|
|
|
Proof.
|
|
|
|
|
intros Hty Hstep. destruct Hstep as [K e1 e2 -> -> Hstep].
|
|
|
|
|
eapply fill_typing_decompose in Hty as [B [H1 H2]].
|
|
|
|
|
eapply fill_typing_compose; last done.
|
|
|
|
|
by eapply typed_preservation_base_step.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
Lemma typed_safety e1 e2 A:
|
|
|
|
|
TY 0; ∅ ⊢ e1 : A →
|
|
|
|
|
rtc contextual_step e1 e2 →
|
|
|
|
|
is_val e2 ∨ reducible e2.
|
|
|
|
|
Proof.
|
|
|
|
|
induction 2; eauto using typed_progress, typed_preservation.
|
|
|
|
|
Qed.
|
|
|
|
|
|
|
|
|
|
(** derived typing rules *)
|
|
|
|
|
Lemma typed_tapp' n Γ A B C e :
|
|
|
|
|
TY n; Γ ⊢ e : (∀: A) →
|
|
|
|
|
type_wf n B →
|
|
|
|
|
C = A.[B/] →
|
|
|
|
|
TY n; Γ ⊢ e <> : C.
|
|
|
|
|
Proof.
|
|
|
|
|
intros; subst C; by eapply typed_tapp.
|
|
|
|
|
Qed.
|