Release warmup_sol.v

amethyst
mueck 1 year ago
parent 6a3451d399
commit 76bf0c5f6d
No known key found for this signature in database

@ -18,4 +18,5 @@ theories/type_systems/stlc/notation.v
# By removing the # below, you can add the exercise sheets to make
#theories/type_systems/warmup/warmup.v
#theories/type_systems/warmup/warmup_sol.v
#theories/type_systems/stlc/exercises01.v

@ -95,8 +95,6 @@ Section rtc.
| rtc_base x : rtc R x x
| rtc_step x y z : R x y rtc R y z rtc R x z.
Goal rtc step ()
Lemma rtc_reflexive R : Reflexive (rtc R).
Proof.
unfold Reflexive.

@ -0,0 +1,166 @@
(* Throughout the course, we will be using the [stdpp] library to provide
some useful and common features.
We will introduce you to its features as we need them.
*)
From stdpp Require Import base tactics numbers strings.
From stdpp Require relations.
From semantics.lib Require Import maps.
(** * Exercise sheet 0 *)
(* We are using Coq's notion of integers, [Z].
All the standard operations, like [+] and [*], are defined on it.
*)
Inductive expr :=
| Const (z : Z)
| Plus (e1 e2 : expr)
| Mul (e1 e2 : expr).
(** Exercise 1: Arithmetics *)
Fixpoint expr_eval (e : expr) : Z :=
match e with
| Const z => z
| Plus e1 e2 => (expr_eval e1) + (expr_eval e2)
| Mul e1 e2 => (expr_eval e1) * (expr_eval e2)
end.
(** Now let's define some notation to make it look nice! *)
(* We declare a so-called notation scope, so that we can still use the nice notations for addition on natural numbers [nat] and integers [Z]. *)
Declare Scope expr.
Delimit Scope expr with E.
Notation "e1 + e2" := (Plus e1%Z e2%Z) : expr.
Notation "e1 * e2" := (Mul e1%Z e2%Z) : expr.
Lemma expr_eval_test: expr_eval (Plus (Const (-4)) (Const 5)) = 1%Z.
Proof.
(* should be solved by: simpl. lia. *)
simpl. lia.
Qed.
Lemma plus_eval_comm e1 e2 :
expr_eval (Plus e1 e2) = expr_eval (Plus e2 e1).
Proof.
simpl. lia.
Qed.
Lemma plus_syntax_not_comm :
Plus (Const 0) (Const 1) Plus (Const 1) (Const 0).
Proof.
(* [done] is an automation tactic provided by [stdpp] to solve simple goals. *)
intros Heq. injection Heq. done.
Qed.
(** Exercise 2: Open arithmetical expressions *)
(* Finally, we introduce variables into our arithmetic expressions.
Variables are of Coq's [string] type.
*)
Inductive expr' :=
| Var (x: string)
| Const' (z : Z)
| Plus' (e1 e2 : expr')
| Mul' (e1 e2 : expr').
(* We call an expression closed under the list X,
if it only contains variables in X *)
Fixpoint is_closed (X: list string) (e: expr') : bool :=
match e with
| Var x => bool_decide (x X)
| Const' z => true
| Plus' e1 e2 => is_closed X e1 && is_closed X e2
| Mul' e1 e2 => is_closed X e1 && is_closed X e2
end.
Definition closed X e := is_closed X e = true.
(* Some examples of closed terms. *)
Lemma example_no_vars_closed:
closed [] (Plus' (Const' 3) (Const' 5)).
Proof.
unfold closed. simpl. done.
Qed.
Lemma example_some_vars_closed:
closed ["x"; "y"] (Plus' (Var "x") (Var "y")).
Proof.
unfold closed. simpl. done.
Qed.
Lemma example_not_closed:
¬ closed ["x"] (Plus' (Var "x") (Var "y")).
Proof.
unfold closed. simpl. done.
Qed.
Lemma closed_mono X Y e:
X Y closed X e closed Y e.
Proof.
unfold closed. intros Hsub; induction e as [ x | z | e1 IHe1 e2 IHe2 | e1 IHe1 e2 IHe2]; simpl.
- (* bool_decide is an stdpp function, which can be used to decide simple decidable propositions.
Make a search for it to find the right lemmas to complete this subgoal. *)
(* Search bool_decide. *)
intros ?%bool_decide_eq_true_1. eapply bool_decide_eq_true_2.
naive_solver.
- done.
- (* Locate the notation for && by typing: Locate "&&". Then search for the right lemmas.*)
intros [H1 H2]%andb_prop. rewrite IHe1, IHe2; done.
- intros [H1 H2]%andb_prop. rewrite IHe1, IHe2; done.
Qed.
(* we define a substitution operation on open expressions *)
Fixpoint subst (e: expr') (x: string) (e': expr') : expr' :=
match e with
| Var y => if (bool_decide (x = y)) then e' else Var y
| Const' z => Const' z
| Plus' e1 e2 => Plus' (subst e1 x e') (subst e2 x e')
| Mul' e1 e2 => Mul' (subst e1 x e') (subst e2 x e')
end.
Lemma subst_closed e e' x X:
closed X e ¬ (x X) subst e x e' = e.
Proof.
unfold closed. induction e as [ y | z | e1 IHe1 e2 IHe2 | e1 IHe1 e2 IHe2]; simpl.
- intros Hel%bool_decide_eq_true_1 Hnel.
destruct bool_decide eqn: Heq.
+ eapply bool_decide_eq_true_1 in Heq. subst.
congruence.
+ done.
- done.
- intros [Hcl1 Hcl2]%andb_prop Hnel.
rewrite IHe1; eauto.
rewrite IHe2; eauto.
- intros [Hcl1 Hcl2]%andb_prop Hnel.
rewrite IHe1; eauto.
rewrite IHe2; eauto.
Qed.
(* To evaluate an arithmetic expression, we define an evaluation function [expr_eval], which maps them to integers.
Since our expressions contain variables, we pass a finite map as the argument, which is used to look up variables.
The type of finite maps that we use is called [gmap].
*)
Fixpoint expr_eval' (m: gmap string Z) (e : expr') : Z :=
match e with
| Var x => default 0%Z (m !! x) (* this is the lookup operation on gmaps *)
| Const' z => z
| Plus' e1 e2 => (expr_eval' m e1) + (expr_eval' m e2)
| Mul' e1 e2 => (expr_eval' m e1) * (expr_eval' m e2)
end.
(* Prove the following lemma which explains how substitution interacts with evaluation *)
Lemma eval_subst_extend (m: gmap string Z) e x e':
expr_eval' m (subst e x e') = expr_eval' (<[x := expr_eval' m e']> m) e.
Proof.
induction e as [ y | z | e1 IHe1 e2 IHe2 | e1 IHe1 e2 IHe2]; simpl.
- destruct bool_decide eqn: Heq.
+ eapply bool_decide_eq_true_1 in Heq. subst.
rewrite lookup_insert. done.
+ eapply bool_decide_eq_false_1 in Heq.
rewrite lookup_insert_ne; [|done].
simpl. done.
- done.
- rewrite IHe1, IHe2. done.
- rewrite IHe1, IHe2. done.
Qed.
Loading…
Cancel
Save