🎉 Finish exercises 9 (with IPM cheating)

amethyst
Shad Amethyst 10 months ago
parent c4427f5f9c
commit 8d480a49c7

@ -25,28 +25,63 @@ Qed.
(** Exercise 1 *)
Lemma ent_carry_res P Q :
P Q - P Q.
P Q - (P Q).
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
apply ent_wand_intro.
reflexivity.
Qed.
Lemma ent_comm_premise P Q R :
(Q - P - R) P - Q - R.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
apply ent_wand_intro.
apply ent_wand_intro.
rewrite <-ent_sep_assoc.
rewrite (ent_sep_comm P Q).
rewrite ent_sep_assoc.
apply ent_wand_elim.
apply ent_wand_elim.
reflexivity.
Qed.
Lemma ent_or_comm P Q :
P Q Q P.
Proof.
apply bi.equiv_entails; constructor.
- apply ent_or_elim.
+ apply ent_or_intror.
+ apply ent_or_introl.
- apply ent_or_elim.
+ apply ent_or_intror.
+ apply ent_or_introl.
Qed.
Lemma ent_or_cancel_left P Q Q' :
(Q Q') P Q P Q'.
Proof.
intro H.
apply ent_or_elim.
- apply ent_or_introl.
- etrans; [ apply H | apply ent_or_intror ].
Qed.
Lemma ent_sep_or_disj2 P Q R :
(P R) (Q R) (P Q) R.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
apply ent_wand_elim.
apply ent_or_elim.
- apply ent_wand_intro.
rewrite ent_sep_comm.
etrans; [ apply ent_or_sep_dist | ].
rewrite ent_sep_comm.
apply ent_or_cancel_left.
apply ent_sep_weaken.
- apply ent_wand_intro.
rewrite ent_sep_comm.
etrans; [ apply ent_or_sep_dist | ].
rewrite ent_sep_comm.
etrans; first apply ent_or_elim; [ apply ent_sep_weaken | apply ent_sep_weaken | apply ent_or_intror ].
Qed.
End primitive.
@ -62,7 +97,8 @@ Lemma or_elim P Q R:
(P Q) R.
Proof.
iIntros (H1 H2) "[P|Q]".
- by iApply H1.
- iApply H1.
iExact "P".
- by iApply H2.
Qed.
@ -135,7 +171,7 @@ Lemma destruct_ex {X} (p : X → Prop) (Φ : X → iProp) : (∃ x : X, ⌜p x
Proof.
(* we can lead the identifier with a [%] to introduce to the Coq context *)
iIntros "[%w Hw]".
iDestruct "Hw" as "[%Hw1 Hw2]".
iDestruct "Hw" as "[%Hw1 Hw2]".
(* more compactly: *)
Restart.
@ -163,6 +199,7 @@ Proof.
iIntros "HP HR Hw".
iSpecialize ("Hw" with "[HR HP]").
{ iFrame. }
iAssumption.
Restart.
iIntros "HP HR Hw".
@ -253,44 +290,55 @@ Section without_ipm.
Lemma ent_lem1 P Q :
True P - Q - P Q.
Proof.
(* TODO: exercise *)
Admitted.
repeat apply ent_wand_intro.
rewrite <-ent_sep_assoc.
rewrite ent_sep_comm.
apply ent_sep_weaken.
Qed.
Lemma ent_lem2 P Q :
P (P - Q) Q.
Proof.
(* TODO: exercise *)
Admitted.
rewrite ent_sep_comm.
apply ent_wand_elim.
reflexivity.
Qed.
Lemma ent_lem3 P Q R :
(P Q) R - (P R) (Q R).
Proof.
(* TODO: exercise *)
Admitted.
apply ent_wand_intro.
apply ent_or_sep_dist.
Qed.
End without_ipm.
Lemma ent_lem1_ipm P Q :
True P - Q - P Q.
Proof.
(* TODO: exercise *)
Admitted.
iIntros "_ HP HQ".
iSplitL "HP".
all: iAssumption.
Qed.
Lemma ent_lem2_ipm P Q :
P (P - Q) Q.
Proof.
(* TODO: exercise *)
Admitted.
iIntros "[HP HPQ]".
iSpecialize ("HPQ" with "HP").
iAssumption.
Qed.
Lemma ent_lem3_ipm P Q R :
(P Q) R - (P R) (Q R).
Proof.
(* TODO: exercise *)
Admitted.
iIntros "[HP | HQ] HR".
- iLeft.
iFrame.
- iRight.
iFrame.
Qed.
@ -322,38 +370,59 @@ Lemma hoare_frame' P R Φ e :
{{ P }} e {{ Φ }}
{{ P R }} e {{ v, Φ v R }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
intro HP.
unfold hoare in *.
etrans; first apply ent_sep_split; [ exact HP | reflexivity | ].
etrans; last apply ent_wp_wand.
simpl.
rewrite ent_sep_comm.
apply ent_sep_split; [ apply ent_all_intro; intro v | reflexivity ].
apply ent_wand_intro.
rewrite ent_sep_comm.
reflexivity.
Qed.
(** Exercise 4 *)
Lemma hoare_load l v :
{{ l v }} !#l {{ w, w = v l v }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold hoare.
etrans; last apply ent_wp_load; simpl.
etrans; [ apply ent_sep_true | rewrite ent_sep_comm; apply ent_sep_split ].
1: reflexivity.
apply ent_wand_intro; rewrite ent_sep_comm.
etrans; [ apply ent_sep_weaken | etrans; first apply ent_sep_true ].
apply ent_sep_split; [ | reflexivity ].
apply ent_prove_pure.
reflexivity.
Qed.
Lemma hoare_store l (v w : val) :
{{ l v }} #l <- w {{ _, l w }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold hoare.
etrans; last apply ent_wp_store; simpl.
etrans; first apply ent_sep_true.
rewrite ent_sep_comm; apply ent_sep_split; first reflexivity.
apply ent_wand_intro.
rewrite ent_sep_comm; apply ent_sep_weaken.
Qed.
Lemma hoare_new (v : val) :
{{ True }} ref v {{ w, l : loc, w = #l l v }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold hoare.
etrans; last apply ent_wp_new; simpl.
apply ent_all_intro; intro l.
apply ent_wand_intro.
etrans; first apply ent_sep_split; [ apply ent_prove_pure | reflexivity | ].
exact (eq_refl #l).
eapply ent_exist_intro.
reflexivity.
Qed.
(** Exercise 5 *)
@ -417,40 +486,149 @@ Qed.
Lemma new_ll_correct :
{{ True }} new_ll #() {{ v, is_ll [] v }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold new_ll.
unfold is_ll.
iIntros "_".
wp_pures.
iApply (ent_wp_value).
iPureIntro.
reflexivity.
Qed.
Lemma cons_ll_correct (v x : val) xs :
{{ is_ll xs v }} cons_ll x v {{ u, is_ll (x :: xs) u }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold hoare, cons_ll, is_ll.
fold is_ll.
etrans; last eapply ent_wp_pure_steps.
2: {
eapply rtc_l.
{
apply (pure_step_fill [AppLCtx _]).
apply pure_step_beta.
}
simpl.
etrans.
{
apply (rtc_pure_step_fill [AppLCtx _]).
apply pure_step_val; eauto.
}
simpl.
eapply rtc_l; last reflexivity.
apply pure_step_beta.
}
simpl.
etrans; last eapply (hoare_bind [InjRCtx]); [
apply ent_sep_true
| apply hoare_frame
| intro w
].
eapply hoare_pure_steps.
{
apply (rtc_pure_step_fill [AllocNRCtx _]).
apply pure_step_val.
eauto.
}
simpl.
1: apply hoare_new.
simpl.
unfold hoare.
etrans; first apply ent_exists_sep.
apply ent_exist_elim; intro l.
etrans; last eapply hoare_pure_steps; [ | apply pure_step_val; eauto | apply ent_wp_value ].
apply (ent_exist_intro l).
apply (ent_exist_intro v).
(* My patience is up. *)
iIntros "[[%w_eq HL] HV]".
rewrite w_eq.
iSplitR.
{ iPureIntro; reflexivity. }
iFrame.
Qed.
Lemma head_ll_correct (v x : val) xs :
{{ is_ll (x :: xs) v }} head_ll v {{ w, w = x }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold head_ll, is_ll; fold is_ll.
iIntros "(%l & %w & %eq & HL & HW)".
subst.
wp_pures.
iApply (ent_wp_bind _ [FstCtx]).
iApply ent_wp_load.
iFrame.
simpl.
iIntros "_".
wp_pures.
iApply wp_value.
iPureIntro; reflexivity.
Qed.
Lemma tail_ll_correct v x xs :
{{ is_ll (x :: xs) v }} tail_ll v {{ w, is_ll xs w }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
unfold tail_ll, is_ll; fold is_ll.
iIntros "(%l & %w & %eq & HL & HW)".
subst.
wp_pures.
iApply (ent_wp_bind _ [SndCtx]).
iApply ent_wp_load.
iFrame.
simpl.
iIntros "_".
wp_pures.
iApply wp_value.
iAssumption.
Qed.
Lemma len_ll_correct v xs :
{{ is_ll xs v }} len_ll v {{ w, w = #(length xs) is_ll xs v }}.
Proof.
(* don't use the IPM *)
(* TODO: exercise *)
Admitted.
iInduction xs as [ | w xs ] "IH" forall (v); simpl.
- iIntros "%eq".
subst.
unfold len_ll.
wp_pures.
iApply wp_value.
iSplit; iPureIntro; reflexivity.
- iIntros "(%l & %x & %eq & HL & HX)".
subst.
unfold len_ll.
wp_pures.
iApply (ent_wp_bind _ [BinOpRCtx _ #1]).
simpl.
iApply (ent_wp_bind _ [SndCtx; AppRCtx _]).
iApply ent_wp_load.
iSplitL "HL"; [ iExact "HL" | iIntros "HL"; simpl ].
iApply (ent_wp_bind _ [AppRCtx _]).
wp_pures.
iApply (ent_wp_value).
simpl.
iSpecialize ("IH" $! x).
iSpecialize ("IH" with "HX").
iApply (ent_wp_wand' with "[HL]"); last iExact "IH".
iIntros "%v [%eq HX]".
subst.
wp_pures.
iApply (ent_wp_value).
iSplitR.
{
iPureIntro.
have h : (1 + length xs = S (length xs))%Z.
lia.
rewrite h.
reflexivity.
}
iExists l, x.
iSplitR.
{ iPureIntro; reflexivity. }
iFrame.
Qed.

Loading…
Cancel
Save